A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multi...A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.展开更多
In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure c...In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.展开更多
基金This research was supported by The Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB650070/0168)This research block grants was managed under Rajamangala University of Technology Thanyaburi(FRB65E0634M.3).
文摘A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.
文摘In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.