Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltag...Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.展开更多
A NFFP HVI structure which implements high breakdown voltage without using additional FFP and process steps is proposed in this paper. An 850 V high voltage half bridge gate drive IC with the NFFP HVI structure is exp...A NFFP HVI structure which implements high breakdown voltage without using additional FFP and process steps is proposed in this paper. An 850 V high voltage half bridge gate drive IC with the NFFP HVI structure is experimentally realized using a thin epitaxial BCD process. Compared with the MFFP HVI structure, the proposed NFFP HVI structure shows simpler process and lower cost. The high side offset voltage in the half bridge gate drive IC with the NFFP HVI structure is almost as same as that with the self-shielding structure.展开更多
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60906038 and 61076082)
文摘Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.
基金This work was supported by the National Nature Science Foundation of China under Grant No.60436030.
文摘A NFFP HVI structure which implements high breakdown voltage without using additional FFP and process steps is proposed in this paper. An 850 V high voltage half bridge gate drive IC with the NFFP HVI structure is experimentally realized using a thin epitaxial BCD process. Compared with the MFFP HVI structure, the proposed NFFP HVI structure shows simpler process and lower cost. The high side offset voltage in the half bridge gate drive IC with the NFFP HVI structure is almost as same as that with the self-shielding structure.