In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GP...In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GPS real-time deformation series with a high sampling rate contain coloured noise, the multiple Kalman filter model requires the white noise, and the multiple Kalman filters model is augmented by a shaping filter in order to reduce the colored noise; secondly, the multiple Kalman filters model with shaping filter can detect the deformation epoch in real-time and improve the quality of GPS measurements for the real-time deformation applications. Based on the comparisons of the applications in different GPS time series with different models, the advantages of the proposed model were illustrated. The proposed model can reduce the colored noise, detect the smaller changes, and improve the precision of the detected deformation epoch.展开更多
In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards...In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.展开更多
A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance ...A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance as the interacting multiple model filter at the price ofless computational cost. Numerically robust implementation of the filter is presented to meetpractical applications. An example on bearings-only guidance demonstrates the effect of the proposedalgorithm.展开更多
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi...To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.展开更多
Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-N...Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter <i>H</i><i><sub>l</sub></i>(<i>z</i>) and the adaptive IIR notch filter <i>H</i><i><sub>N</sub></i>(<i>z</i>), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (<i>w(0)</i>) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF <i>H</i><i><sub>N</sub></i>(<i>z</i>) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (<i>k<sub>N</sub></i>=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.展开更多
The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac...In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.展开更多
With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirement...With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable.展开更多
Interacting Multiple Model Kalman-Particle Filter (IMMK-PF) has the advantages of particle filter and Kalman filter and good computation efficiency compared with Interacting Multiple Model Particle Filter (IMMPF). Bas...Interacting Multiple Model Kalman-Particle Filter (IMMK-PF) has the advantages of particle filter and Kalman filter and good computation efficiency compared with Interacting Multiple Model Particle Filter (IMMPF). Based on IMMK-PF, an adaptive sampling target tracking algorithm for Phased Array Radar (PAR) is proposed. This algorithm first predicts Posterior Cramer-Rao Bound Matrix (PCRBM) of the target state, then updates the sample interval in accordance with change of the target dynamics by comparing the trace of the predicted PCRBM with a certain threshold. Simulation results demonstrate that this algorithm could solve the nonlinear motion and the nonlinear relationship between radar measurement and target motion state and decrease computation load.展开更多
We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging....We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array (EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method. To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.展开更多
As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are alr...As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are already known, but the convolution theorems, similar to the version of the Fourier transform, are still to be determined. In this paper, the authors derive the convolution theorems for the LCT, and explore the sampling theorem and multiplicative filter for the band limited signal in the linear canonical domain. Finally, the sampling and reconstruction formulas are deduced, together with the construction methodology for the above mentioned multiplicative filter in the time domain based on fast Fourier transform (FFT), which has much lower computational load than the construction method in the linear canonical domain.展开更多
To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adapti...To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.展开更多
This paper proposes an interlaced attitude estimation method for spacecraft using vector observations,which can simultaneously estimate the constant attitude at the very start and the attitude of the body frame relati...This paper proposes an interlaced attitude estimation method for spacecraft using vector observations,which can simultaneously estimate the constant attitude at the very start and the attitude of the body frame relative to its initial state.The arbitrary initial attitude,described by constant attitude at the very start,is determined using quaternion estimator which requires no prior information.The multiplicative extended Kalman-lter(EKF)is competent for estimating the attitude of the body frame relative to its initial state since the initial value of this attitude is exactly known.The simulation results show that the proposed algorithms could achieve better performance compared with the state-of-the-art algorithms even with extreme large initial errors.Meanwhile,the computational burden is also much less than that of the advanced nonlinear attitude estimators.展开更多
Accurate and efficient three-dimensional(3D)streetscape reconstruction is the fundamental ability for an exploration vehicle to navigate safely and perform high-level tasks.Recently,remarkable progress has been made i...Accurate and efficient three-dimensional(3D)streetscape reconstruction is the fundamental ability for an exploration vehicle to navigate safely and perform high-level tasks.Recently,remarkable progress has been made in streetscape reconstruction with visual images and light detection and ranging(LiDAR),but they have difficulties either in scaling and reconstructing large-scale outdoors or in efficient processing.To address these issues,this paper proposed an automatic method for incremental dense reconstruction of large-scale 3D streetscapes from coarse to fine at near real time.Firstly,the pose of vehicle is estimated by visual and laser odometry(VLO)and the state-of-the-art pyramid stereo matching network(PSMNet)is introduced to estimate depth information.Then,incremental dense 3D streetscape reconstruction is conducted by key-frame selection and coarse registration with local optimization.Finally,redundant and noise points are removed through multiple filtering,resulting good quality of dense reconstruction.Comprehensive experiments were undertaken to check the visual effect,trajectory pose error and multi-scale model to model cloud comparison(M3C2)based on reference trajectories and reconstructions provided by the state-of-the-art method,showing the precision,recall and F-score of sampling core points(SCPs)are over 80.42%,71.68%and 77.19%,respectively,which verified the proposed method.展开更多
A control strategy of frequency self-adaptation without phase-locked loop(PLL)underαβstationary reference frame(αβ-SRF)for a VSC-HVDC system is presented to improve the operational performance of the system under ...A control strategy of frequency self-adaptation without phase-locked loop(PLL)underαβstationary reference frame(αβ-SRF)for a VSC-HVDC system is presented to improve the operational performance of the system under severe harmonic distortion conditions.The control strategy helps to eliminate the cross-coupling under dq synchronous reference frame(dq-SRF),and is achieved through two key technologies:1)positive phase sequence(PPS)and negative phase sequence(NPS)fundamental components are extracted from the AC grid voltage with an improved multiple complex coefficient filter(IMCF),and 2)grid instantaneous frequency is rapidly and precisely tracked using a frequency self-adaptation tracking algorithm(FATA)without PLL.The proposed strategy is applied to a point-to-point VSCHVDC system and validated by means of simulations.The results are compared to those with the traditional vector control strategy under dq-SRF.Simulation results illustrate that the proposed strategy results in better system performance than that with the traditional strategy in terms of harmonic suppression under normal and severe operating conditions of the AC system.展开更多
基金Project(20120022120011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2652012062)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GPS real-time deformation series with a high sampling rate contain coloured noise, the multiple Kalman filter model requires the white noise, and the multiple Kalman filters model is augmented by a shaping filter in order to reduce the colored noise; secondly, the multiple Kalman filters model with shaping filter can detect the deformation epoch in real-time and improve the quality of GPS measurements for the real-time deformation applications. Based on the comparisons of the applications in different GPS time series with different models, the advantages of the proposed model were illustrated. The proposed model can reduce the colored noise, detect the smaller changes, and improve the precision of the detected deformation epoch.
基金supported in part by the National Basic Research Program of China(973 Program)under Grant 2013CB336600the Beijing Natural Science Foundation under Grant 4131003+1 种基金the National Natural Science Foundation of China under Grant{61201187,61422109}the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110
文摘In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.
文摘A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance as the interacting multiple model filter at the price ofless computational cost. Numerically robust implementation of the filter is presented to meetpractical applications. An example on bearings-only guidance demonstrates the effect of the proposedalgorithm.
基金Supported by the National Natural Science Foundation of China (60634030), the National Natural Science Foundation of China (60702066, 6097219) and the Natural Science Foundation of Henan Province (092300410158).
文摘To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.
文摘Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter <i>H</i><i><sub>l</sub></i>(<i>z</i>) and the adaptive IIR notch filter <i>H</i><i><sub>N</sub></i>(<i>z</i>), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (<i>w(0)</i>) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF <i>H</i><i><sub>N</sub></i>(<i>z</i>) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (<i>k<sub>N</sub></i>=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
文摘In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.
基金supported by the Foundation of Key Laboratory of Near-Surface。
文摘With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable.
文摘Interacting Multiple Model Kalman-Particle Filter (IMMK-PF) has the advantages of particle filter and Kalman filter and good computation efficiency compared with Interacting Multiple Model Particle Filter (IMMPF). Based on IMMK-PF, an adaptive sampling target tracking algorithm for Phased Array Radar (PAR) is proposed. This algorithm first predicts Posterior Cramer-Rao Bound Matrix (PCRBM) of the target state, then updates the sample interval in accordance with change of the target dynamics by comparing the trace of the predicted PCRBM with a certain threshold. Simulation results demonstrate that this algorithm could solve the nonlinear motion and the nonlinear relationship between radar measurement and target motion state and decrease computation load.
基金supported by the information technology(IT)research and development program of MKE/KEIT(10041682Development of High-Definition 3D Image Processing Technologies Using Advanced Integral Imaging with Improved Depth Range)
文摘We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array (EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method. To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.60232010 and 60572094)the Ministerial Foundation of China(Grant No.6140445).
文摘As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are already known, but the convolution theorems, similar to the version of the Fourier transform, are still to be determined. In this paper, the authors derive the convolution theorems for the LCT, and explore the sampling theorem and multiplicative filter for the band limited signal in the linear canonical domain. Finally, the sampling and reconstruction formulas are deduced, together with the construction methodology for the above mentioned multiplicative filter in the time domain based on fast Fourier transform (FFT), which has much lower computational load than the construction method in the linear canonical domain.
基金supported by the National Defense Pre-Research Foundation of China
文摘To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.
文摘This paper proposes an interlaced attitude estimation method for spacecraft using vector observations,which can simultaneously estimate the constant attitude at the very start and the attitude of the body frame relative to its initial state.The arbitrary initial attitude,described by constant attitude at the very start,is determined using quaternion estimator which requires no prior information.The multiplicative extended Kalman-lter(EKF)is competent for estimating the attitude of the body frame relative to its initial state since the initial value of this attitude is exactly known.The simulation results show that the proposed algorithms could achieve better performance compared with the state-of-the-art algorithms even with extreme large initial errors.Meanwhile,the computational burden is also much less than that of the advanced nonlinear attitude estimators.
基金funded by the National Natural Science Foundation of China for Distinguished Young Scholars[grant number 41725005]the Key Project of the National Natural Science Foundation of China[grant number 41531177]the National Key Research and Development Program of China[grant number 2016YFB0501803].
文摘Accurate and efficient three-dimensional(3D)streetscape reconstruction is the fundamental ability for an exploration vehicle to navigate safely and perform high-level tasks.Recently,remarkable progress has been made in streetscape reconstruction with visual images and light detection and ranging(LiDAR),but they have difficulties either in scaling and reconstructing large-scale outdoors or in efficient processing.To address these issues,this paper proposed an automatic method for incremental dense reconstruction of large-scale 3D streetscapes from coarse to fine at near real time.Firstly,the pose of vehicle is estimated by visual and laser odometry(VLO)and the state-of-the-art pyramid stereo matching network(PSMNet)is introduced to estimate depth information.Then,incremental dense 3D streetscape reconstruction is conducted by key-frame selection and coarse registration with local optimization.Finally,redundant and noise points are removed through multiple filtering,resulting good quality of dense reconstruction.Comprehensive experiments were undertaken to check the visual effect,trajectory pose error and multi-scale model to model cloud comparison(M3C2)based on reference trajectories and reconstructions provided by the state-of-the-art method,showing the precision,recall and F-score of sampling core points(SCPs)are over 80.42%,71.68%and 77.19%,respectively,which verified the proposed method.
基金supported by the Science and Technology Project of the State Grid Corporation of China(SGRIZLKJ[2015]457)。
文摘A control strategy of frequency self-adaptation without phase-locked loop(PLL)underαβstationary reference frame(αβ-SRF)for a VSC-HVDC system is presented to improve the operational performance of the system under severe harmonic distortion conditions.The control strategy helps to eliminate the cross-coupling under dq synchronous reference frame(dq-SRF),and is achieved through two key technologies:1)positive phase sequence(PPS)and negative phase sequence(NPS)fundamental components are extracted from the AC grid voltage with an improved multiple complex coefficient filter(IMCF),and 2)grid instantaneous frequency is rapidly and precisely tracked using a frequency self-adaptation tracking algorithm(FATA)without PLL.The proposed strategy is applied to a point-to-point VSCHVDC system and validated by means of simulations.The results are compared to those with the traditional vector control strategy under dq-SRF.Simulation results illustrate that the proposed strategy results in better system performance than that with the traditional strategy in terms of harmonic suppression under normal and severe operating conditions of the AC system.