In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate lo...Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.展开更多
In this paper we present the performance analysis of a novel channel assignment scheme where two non-cooperative independent users simultaneously communicate with their destination through a single relay by using only...In this paper we present the performance analysis of a novel channel assignment scheme where two non-cooperative independent users simultaneously communicate with their destination through a single relay by using only two frequency channels. The analytic derivation of the probability of symbol error for two main relay techniques will be provided, namely Amplify-and-Forward (AF) and Decode-and-Forward (DF). As shown by the obtained results, our switched-frequency approach results in a model that can achieve full- diversity by means of maximum-likelihood decoding at the receiver. Our results are especially important in the DF case, since in traditional techniques (such as half-duplex two-time slot approaches) two sources si-multaneously transmit on the same channel through the first time slot, which necessitates some sort of su-perposition coding. However, since in our scheme both users transmit over orthogonal channels, such a coding scheme is not required. In addition, it is shown that the DF approach based on our novel channel assign-ment scheme outperforms the AF scheme, especially in scenarios where the relay is closer to the receiver.展开更多
For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform ...For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.展开更多
A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless com...A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.展开更多
This paper presents an efficient Joint Coding and Modulation Diversity ( JCMD ) scheme. The proposed scheme applied modulation diversity technique to MIMO-OFDM system which can effectively use time, frequency and spac...This paper presents an efficient Joint Coding and Modulation Diversity ( JCMD ) scheme. The proposed scheme applied modulation diversity technique to MIMO-OFDM system which can effectively use time, frequency and space diversity combined with channel coding. In fading channel,the proposed scheme not only achieves high spectral efficiency,but also greatly enhances the reliability of wireless transmission. The self- developed hardware prototype system proves that the proposed scheme can be realized and has high reliability. Compared with traditional MIMO-OFDM scheme based on bit-interleaved coded modulation ( BICM) ,software and hardware simulation results show that the proposed scheme with the optimal rotational angle can obtain a significant performance advantage both for precoded and non-precoded system in the condition of non-perfect channel knowledge and non-ideal synchronization.展开更多
A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) p...A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.展开更多
The ergodic information rate for Orthogonal Frequency-Division Multiplexing / Orthogonal Frequency-Division Multiple Access with amplify-and-forward (AF) relaying systems in the presence of frequency offsets is eval...The ergodic information rate for Orthogonal Frequency-Division Multiplexing / Orthogonal Frequency-Division Multiple Access with amplify-and-forward (AF) relaying systems in the presence of frequency offsets is evaluated. Unlike previous work, per-subcarrier adaptive power allocation is performed on each relay to optimize the system ergodic information rate. For a given frequency offset and total number of relays M, the AF ergodic information rate is proven to be a monotonically increasing function of α (the ratio of the power allocated to the source node and the total transmit power), implying that the maximum ergodic information rate can be obtained at α=1 (i.e., there is no cooperative relay). Furthermore, the proof of "cooperative relays cannot improve the AF ergodic information rate in a quasi-static wireless channel" is also provided in this letter.展开更多
In this letter,the sensitivity of an uplink Multi-Tone Code-Division Multiple Access (MT-CDMA) system to the Carrier Frequency Offset (CFO) is investigated. The analytical expression for the Bit Error Rate (BER) of up...In this letter,the sensitivity of an uplink Multi-Tone Code-Division Multiple Access (MT-CDMA) system to the Carrier Frequency Offset (CFO) is investigated. The analytical expression for the Bit Error Rate (BER) of uplink MT-CDMA in the presence of CFO is derived in a multipath Rayleigh fading channel which is verified through simulations. Both Maximal Ratio Combining (MRC) and Equal Gain Combining (EGC) are considered in combining multipath signals in the analysis. It is found that the BER performance can be improved with the number of multipath increasing in the presence of CFO.展开更多
This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmi...This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.展开更多
An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIM...An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.展开更多
Orthogonal frequency division multiplexing-interleave division multiple access (OFDM-IDMA) systems may suffer from serious inter-carrier interference (ICI) in time-and frequency-selective (doubly selective) channels. ...Orthogonal frequency division multiplexing-interleave division multiple access (OFDM-IDMA) systems may suffer from serious inter-carrier interference (ICI) in time-and frequency-selective (doubly selective) channels. In such case, the conventional OFDM-IDMA detection algorithm for quasi-static channels will result in significantly performance degradation. In this paper, signal detection is investigated for OFDM-IDMA uplink over doubly selective channels. Firstly, the impact of time-varying channels for OFDM-IDMA uplink is analyzed, which leads to the failure of the conventional algorithm. Secondly, a novel iterative detection algorithm is developed based on an integrated interference canceller, which can iteratively estimate and mitigate the ICI as well as multiple access interference (MAI) simultaneously. In addition, an improved detection algorithm is derived for reducing the complexity using an approximation to the mean and variance of the interference. Simulation results indicate that the proposed algorithm can significantly enhance the system performance to the conventional case, and the improved algorithm can strike a balance between performance and complexity.展开更多
Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO ...Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.展开更多
This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decompositio...This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.展开更多
A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels wit...A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.展开更多
In this work, two popular evolutionary algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) based SDMA-OFDM multi user detection (MUD) have been presented which overcome the limitations of c...In this work, two popular evolutionary algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) based SDMA-OFDM multi user detection (MUD) have been presented which overcome the limitations of classical detectors. They are simple to implement and their complexity in terms of decision-metric evaluations is very less compared to maximum likelihood detection (MLD). These techniques are shown to provide a high performance as compared to the other detectors especially in a rank-deficient scenario where numbers of users are high as compared to the base station (BS) antennas. In this scenario, Zero forcing (ZF) and minimum mean square error (MMSE) based MUDs exhibit severe performance degradation. To investigate almost realistic performance of a wireless communication system, it is important to use a proper channel model. Since the simulation parameters in this work are based on IEEE 802.11n wireless local area network (WLAN) standard, TGn is the channel model used.展开更多
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
基金supported by the National High Technology Research and Development Programme of China(No.2006AA01Z216)
文摘Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.
文摘In this paper we present the performance analysis of a novel channel assignment scheme where two non-cooperative independent users simultaneously communicate with their destination through a single relay by using only two frequency channels. The analytic derivation of the probability of symbol error for two main relay techniques will be provided, namely Amplify-and-Forward (AF) and Decode-and-Forward (DF). As shown by the obtained results, our switched-frequency approach results in a model that can achieve full- diversity by means of maximum-likelihood decoding at the receiver. Our results are especially important in the DF case, since in traditional techniques (such as half-duplex two-time slot approaches) two sources si-multaneously transmit on the same channel through the first time slot, which necessitates some sort of su-perposition coding. However, since in our scheme both users transmit over orthogonal channels, such a coding scheme is not required. In addition, it is shown that the DF approach based on our novel channel assign-ment scheme outperforms the AF scheme, especially in scenarios where the relay is closer to the receiver.
基金supported by the National Natural Science Foundation of China(60672047).
文摘For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572157)the International Cooper-ation Foundation (Grant No.2008DFA11950)
文摘A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.
基金Sponsored by the National Natural Science Fund (Grant No. 61171101)the National Great Science Specific Project (Grant No. 2009ZX03003-011-03)the R&S-BUPT Graduate Innovation Fund
文摘This paper presents an efficient Joint Coding and Modulation Diversity ( JCMD ) scheme. The proposed scheme applied modulation diversity technique to MIMO-OFDM system which can effectively use time, frequency and space diversity combined with channel coding. In fading channel,the proposed scheme not only achieves high spectral efficiency,but also greatly enhances the reliability of wireless transmission. The self- developed hardware prototype system proves that the proposed scheme can be realized and has high reliability. Compared with traditional MIMO-OFDM scheme based on bit-interleaved coded modulation ( BICM) ,software and hardware simulation results show that the proposed scheme with the optimal rotational angle can obtain a significant performance advantage both for precoded and non-precoded system in the condition of non-perfect channel knowledge and non-ideal synchronization.
文摘A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.
基金the 863 project No.2014AA01A701,the National Natural Science Foundation of China,Program for New Century Excellent Talents in University,the open research fund of National Mobile Communications Research Laboratory Southeast University,the Research Foundation of China Mobile,and the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The ergodic information rate for Orthogonal Frequency-Division Multiplexing / Orthogonal Frequency-Division Multiple Access with amplify-and-forward (AF) relaying systems in the presence of frequency offsets is evaluated. Unlike previous work, per-subcarrier adaptive power allocation is performed on each relay to optimize the system ergodic information rate. For a given frequency offset and total number of relays M, the AF ergodic information rate is proven to be a monotonically increasing function of α (the ratio of the power allocated to the source node and the total transmit power), implying that the maximum ergodic information rate can be obtained at α=1 (i.e., there is no cooperative relay). Furthermore, the proof of "cooperative relays cannot improve the AF ergodic information rate in a quasi-static wireless channel" is also provided in this letter.
基金Supported by the National Natural Science Foundation of China (No.60572036).
文摘In this letter,the sensitivity of an uplink Multi-Tone Code-Division Multiple Access (MT-CDMA) system to the Carrier Frequency Offset (CFO) is investigated. The analytical expression for the Bit Error Rate (BER) of uplink MT-CDMA in the presence of CFO is derived in a multipath Rayleigh fading channel which is verified through simulations. Both Maximal Ratio Combining (MRC) and Equal Gain Combining (EGC) are considered in combining multipath signals in the analysis. It is found that the BER performance can be improved with the number of multipath increasing in the presence of CFO.
基金the Specialized Research Fund for the Doctoral Program of Higher Education, China Ministry of Education (No.20030003039).
文摘This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.
基金Supported by the National Natural Science Foundation of China(6096200161071088)
文摘An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.
文摘Orthogonal frequency division multiplexing-interleave division multiple access (OFDM-IDMA) systems may suffer from serious inter-carrier interference (ICI) in time-and frequency-selective (doubly selective) channels. In such case, the conventional OFDM-IDMA detection algorithm for quasi-static channels will result in significantly performance degradation. In this paper, signal detection is investigated for OFDM-IDMA uplink over doubly selective channels. Firstly, the impact of time-varying channels for OFDM-IDMA uplink is analyzed, which leads to the failure of the conventional algorithm. Secondly, a novel iterative detection algorithm is developed based on an integrated interference canceller, which can iteratively estimate and mitigate the ICI as well as multiple access interference (MAI) simultaneously. In addition, an improved detection algorithm is derived for reducing the complexity using an approximation to the mean and variance of the interference. Simulation results indicate that the proposed algorithm can significantly enhance the system performance to the conventional case, and the improved algorithm can strike a balance between performance and complexity.
基金supported by the National Science Fund for Distinguished Young Scholars (60725105)National"863"Program of China (2007AA01Z288)+1 种基金the sixth project of the Key Project of National Nature Science Foundation of China (60496316)Teaching Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,the 111 Project (B08038).
文摘Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.
文摘This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.
基金Supported by the National Natural Science Foundation of China (No.60372107).
文摘A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.
文摘In this work, two popular evolutionary algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) based SDMA-OFDM multi user detection (MUD) have been presented which overcome the limitations of classical detectors. They are simple to implement and their complexity in terms of decision-metric evaluations is very less compared to maximum likelihood detection (MLD). These techniques are shown to provide a high performance as compared to the other detectors especially in a rank-deficient scenario where numbers of users are high as compared to the base station (BS) antennas. In this scenario, Zero forcing (ZF) and minimum mean square error (MMSE) based MUDs exhibit severe performance degradation. To investigate almost realistic performance of a wireless communication system, it is important to use a proper channel model. Since the simulation parameters in this work are based on IEEE 802.11n wireless local area network (WLAN) standard, TGn is the channel model used.