Multiple exciton generation (MEG) dynamics in colloidal PbS quantum dots (QDs) characterized with an im- proved transient grating (TG) technique will be reported. Only one peak soon after optical absorption and ...Multiple exciton generation (MEG) dynamics in colloidal PbS quantum dots (QDs) characterized with an im- proved transient grating (TG) technique will be reported. Only one peak soon after optical absorption and a fast decay within 1 ps can be observed in the TG kinetics when the photon energy of the pump light hv is smaller than 2.7Eg (Eg: band gap between LUMO and HOMO in the QDs), which corresponds to hot carrier cooling. When hv is greater than 2.7Eg, however, after the initial peak, the TG signal decreases first and soon increases, and then a new peak appears at about 2 to 3 ps. The initial peak and the new peak correspond to hot carriers at the higher excited state and MEG at the lowest excited state, respectively. By proposing a theoretical model, we can calculate the hot carrier cooling time constant and MEG occurrence time constant quantitatively. When MEG does not happen for hv smaller than 2.7Eg, hot carrier cools with a time con- stant of 400 fs. When MEG occurs for hv larger than 2.7Eg, hot carrier cools with a time constant as small as 200 fs, while MEG occurs with a time constant of 600 fs. The detailed hot carrier cooling and MEG occurrence dynamics characterized in this work would shed light on the further understanding of MEG mechanism of various type of semiconductor QDs.展开更多
In recent years, semiconductor quantum dots (QDs) have been widely used as photon sources in quantum optics due to their special properties, such as high quantum effi- ciency, narrow and tunable emission spectrum, e...In recent years, semiconductor quantum dots (QDs) have been widely used as photon sources in quantum optics due to their special properties, such as high quantum effi- ciency, narrow and tunable emission spectrum, easy manipulation, and so on. The spontaneous emission of QDs also depends on the surrounding environment.展开更多
基金supported by MEXT KAKENHI Grant no. 26286013the PRESTO program Photoenergy conversion systems and materials for the next generation solar cells,Japan Science and Technology Agency (JST)
文摘Multiple exciton generation (MEG) dynamics in colloidal PbS quantum dots (QDs) characterized with an im- proved transient grating (TG) technique will be reported. Only one peak soon after optical absorption and a fast decay within 1 ps can be observed in the TG kinetics when the photon energy of the pump light hv is smaller than 2.7Eg (Eg: band gap between LUMO and HOMO in the QDs), which corresponds to hot carrier cooling. When hv is greater than 2.7Eg, however, after the initial peak, the TG signal decreases first and soon increases, and then a new peak appears at about 2 to 3 ps. The initial peak and the new peak correspond to hot carriers at the higher excited state and MEG at the lowest excited state, respectively. By proposing a theoretical model, we can calculate the hot carrier cooling time constant and MEG occurrence time constant quantitatively. When MEG does not happen for hv smaller than 2.7Eg, hot carrier cools with a time con- stant of 400 fs. When MEG occurs for hv larger than 2.7Eg, hot carrier cools with a time constant as small as 200 fs, while MEG occurs with a time constant of 600 fs. The detailed hot carrier cooling and MEG occurrence dynamics characterized in this work would shed light on the further understanding of MEG mechanism of various type of semiconductor QDs.
基金supported by the National Natural Science Foundation of China(Nos.11374289 and 61590932)the National Key R&D Program(No.2016YFA0301700)+2 种基金the Innovation Funds from the Chinese Academy of Sciences(No.60921091)the Fundamental Research Funds for the Central Universitiesthe Open Fund of the State Key Laboratory on Integrated Optoelectronics(No.IOSKL2015KF12)
文摘In recent years, semiconductor quantum dots (QDs) have been widely used as photon sources in quantum optics due to their special properties, such as high quantum effi- ciency, narrow and tunable emission spectrum, easy manipulation, and so on. The spontaneous emission of QDs also depends on the surrounding environment.