An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of...Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.展开更多
Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appea...Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform.展开更多
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ...In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.展开更多
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen...The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter.展开更多
According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm ...According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.展开更多
An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method...An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.展开更多
Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’...Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms.展开更多
Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in rea...Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in real time.This requires detecting multiple robots,estimating multi-joint postures,and tracking identities,as well as processing fast in real time.To the best of our knowledge,this challenge has not been tackled in the previous studies.In this paper,to precisely track the planar postures of multiple swimming multi-joint fish-like robots in real time,we propose a novel deep neural network-based method,named TAB-IOL.Its TAB part fuses the top-down and bottom-up approaches for vision-based pose estimation,while the IOL part with long short-term memory considers the motion constraints among joints for precise pose tracking.The satisfying performance of our TAB-IOL is verified by testing on a group of freely swimming fish-like robots in various scenarios with strong disturbances and by a deed comparison of accuracy,speed,and robustness with most state-of-the-art algorithms.Further,based on the precise pose estimation and tracking realized by our TAB-IOL,several formation control experiments are conducted for the group of fish-like robots.The results clearly demonstrate that our TAB-IOL lays a solid foundation for the coordination control of multiple fish-like robots in a real working environment.We believe our proposed method will facilitate the growth and development of related fields.展开更多
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi...To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.展开更多
This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does no...This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does not require any detection.Firstly,more information is reserved and compared with the after-detection measurements using a finite set of detected points.It can significantly improve the tracking performance,especially in low signal-to-noise ratio.Secondly,it inherits the advantages of the multi-Bernoulli approximation which models each of the targets individually.This allows more accurate multi-target state estimation,especially when targets cross.The proposed filter does not need clustering step and simulation results showcase the improved performance of the proposed filter.展开更多
The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-S...The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
In this paper, we have presented a novel tracking method aiming at detecting objects and maintaining their la-bel/identification over the time. The key factors of this method are to use depth information and different...In this paper, we have presented a novel tracking method aiming at detecting objects and maintaining their la-bel/identification over the time. The key factors of this method are to use depth information and different strategies to track objects under various occlusion scenarios. The foreground objects are detected and refined by background subtraction and shadow cancellation. The occlusion detection is based on information of foreground blobs in successive frames. The occlusion regions are projected to the projection plane XZ to analysis occlusion situation. According to the occlusion analysis results, different objects’ corresponding strategies are introduced to track objects under various occlusion scenarios including tracking occluded objects in similar depth layer and in different depth layers. The experimental results show that our proposed method can track the moving objects under the most typical and challenging occlusion scenarios.展开更多
Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multi...Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multiple Model Particle Filter (IMMPF) algorithm is proposed for target tracking by introducing PF into Interactive Multiple Model (IMM).Different from the general method to select importance density function from PF, the particles are extracted from observation likelihood function within depending on observation noises.Observation noise is modelled, and the latest observation is fused, then the target can be effectively tracked.Finally, the optimized method is simulated with respect to bearings-only tracking of maneuvering target in a glint noise environment.Compared with the existing filtering algorithms, it turns out that the developed filtering algorithm is more efficient and closer to the real-time tracking requirement of high maneuvering targets.展开更多
Indoor multi-tracking is more challenging compared with outdoor tasks due to frequent occlusion, view-truncation, severe scale change and pose variation, which may bring considerable unreliability and ambiguity to tar...Indoor multi-tracking is more challenging compared with outdoor tasks due to frequent occlusion, view-truncation, severe scale change and pose variation, which may bring considerable unreliability and ambiguity to target representation and data association. So discriminative and reliable target representation is vital for accurate data association in multi-tracking. Pervious works always combine bunch of features to increase the discriminative power, but this is prone to error accumulation and unnecessary computational cost, which may increase ambiguity on the contrary. Moreover, reliability of a same feature in different scenes may vary a lot, especially for currently widespread network cameras, which are settled in various and complex indoor scenes, previous fixed feature selection schemes cannot meet general requirements. To properly handle these problems, first, we propose a scene-adaptive hierarchical data association scheme, which adaptively selects features with higher reliability on target representation in the applied scene, and gradually combines features to the minimum requirement of discriminating ambiguous targets; second, a novel depth-invariant part-based appearance model using RGB-D data is proposed which makes the appearance model robust to scale change, partial occlusion and view-truncation. The introduce of RGB-D data increases the diversity of features, which provides more types of features for feature selection in data association and enhances the final multi-tracking performance. We validate our method from several aspects including scene-adaptive feature selection scheme, hierarchical data association scheme and RGB-D based appearance modeling scheme in various indoor scenes, which demonstrates its effectiveness and efficiency on improving multi-tracking performances in various indoor scenes.展开更多
Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the sa...Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the same person within one image,but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same.When tracking the same object using two or more images,there must be a way to determine that objects existing in different images are the same object.Therefore,this paper attempts to determine the same object present in different images using color information among the unique information of the object.Thus,this study proposes a multiple-object-tracking method using histogram stamp extraction in closed-circuit television applications.The proposed method determines the presence or absence of a target object in an image by comparing the similarity between the image containing the target object and other images.To this end,a unique color value of the target object is extracted based on its color distribution in the image using three methods:mean,mode,and interquartile range.The Top-N accuracy method is used to analyze the accuracy of each method,and the results show that the mean method had an accuracy of 93.5%(Top-2).Furthermore,the positive prediction value experimental results show that the accuracy of the mean method was 65.7%.As a result of the analysis,it is possible to detect and track the same object present in different images using the unique color of the object.Through the results,it is possible to track the same object that can minimize manpower without using personal information when detecting objects in different images.In the last response speed experiment,it was shown that when the mean was used,the color extraction of the object was possible in real time with 0.016954 s.Through this,it is possible to detect and track the same object in real time when using the proposed method.展开更多
It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M...It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.展开更多
An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-t...An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.展开更多
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
文摘Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
基金Supported by the National Science Foundation of China(61472289)Hubei Province Science Foundation(2015CFB254)
文摘Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform.
文摘In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.
基金supported by the National Natural Science Foundation of China(61401475)
文摘The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter.
基金Supported by the National Natural Science Foundation of China (No.40067116), the Research Development Foundation of Dalian Naval Academy (No.K200821).
文摘According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.
基金supported by the National Natural Science Foundation of China(60835004 60775047+2 种基金 60872130)the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)
文摘An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.
文摘Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms.
基金This work was supported in part by the National Natural Science Foundation of China(61973007,61633002).
文摘Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in real time.This requires detecting multiple robots,estimating multi-joint postures,and tracking identities,as well as processing fast in real time.To the best of our knowledge,this challenge has not been tackled in the previous studies.In this paper,to precisely track the planar postures of multiple swimming multi-joint fish-like robots in real time,we propose a novel deep neural network-based method,named TAB-IOL.Its TAB part fuses the top-down and bottom-up approaches for vision-based pose estimation,while the IOL part with long short-term memory considers the motion constraints among joints for precise pose tracking.The satisfying performance of our TAB-IOL is verified by testing on a group of freely swimming fish-like robots in various scenarios with strong disturbances and by a deed comparison of accuracy,speed,and robustness with most state-of-the-art algorithms.Further,based on the precise pose estimation and tracking realized by our TAB-IOL,several formation control experiments are conducted for the group of fish-like robots.The results clearly demonstrate that our TAB-IOL lays a solid foundation for the coordination control of multiple fish-like robots in a real working environment.We believe our proposed method will facilitate the growth and development of related fields.
基金Supported by the National Natural Science Foundation of China (60634030), the National Natural Science Foundation of China (60702066, 6097219) and the Natural Science Foundation of Henan Province (092300410158).
文摘To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.
文摘This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does not require any detection.Firstly,more information is reserved and compared with the after-detection measurements using a finite set of detected points.It can significantly improve the tracking performance,especially in low signal-to-noise ratio.Secondly,it inherits the advantages of the multi-Bernoulli approximation which models each of the targets individually.This allows more accurate multi-target state estimation,especially when targets cross.The proposed filter does not need clustering step and simulation results showcase the improved performance of the proposed filter.
基金the National Nature Science Foundation of China under Grant No.61271259 and 61301123,the Chongqing Nature Science Foundation under Grant No.CTSC2011jjA40006,and the Research Project of Chongqing Education Commission under Grant No.KJ120501 and KJ120502
文摘The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
文摘In this paper, we have presented a novel tracking method aiming at detecting objects and maintaining their la-bel/identification over the time. The key factors of this method are to use depth information and different strategies to track objects under various occlusion scenarios. The foreground objects are detected and refined by background subtraction and shadow cancellation. The occlusion detection is based on information of foreground blobs in successive frames. The occlusion regions are projected to the projection plane XZ to analysis occlusion situation. According to the occlusion analysis results, different objects’ corresponding strategies are introduced to track objects under various occlusion scenarios including tracking occluded objects in similar depth layer and in different depth layers. The experimental results show that our proposed method can track the moving objects under the most typical and challenging occlusion scenarios.
基金Sponsored by the National Natural Science Foundation of China(Grant No.71271165)
文摘Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multiple Model Particle Filter (IMMPF) algorithm is proposed for target tracking by introducing PF into Interactive Multiple Model (IMM).Different from the general method to select importance density function from PF, the particles are extracted from observation likelihood function within depending on observation noises.Observation noise is modelled, and the latest observation is fused, then the target can be effectively tracked.Finally, the optimized method is simulated with respect to bearings-only tracking of maneuvering target in a glint noise environment.Compared with the existing filtering algorithms, it turns out that the developed filtering algorithm is more efficient and closer to the real-time tracking requirement of high maneuvering targets.
基金This work is supported by National Natural Science Foundation of China (NSFC, No. 61340046), National High Technology Research and Development Program of China (863 Program, No. 2006AA04Z247), Scientific and Technical Innovation Commission of Shenzhen Municipality (JCYJ20130331144631730, JCYJ20130331144716089), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130001110011).
文摘Indoor multi-tracking is more challenging compared with outdoor tasks due to frequent occlusion, view-truncation, severe scale change and pose variation, which may bring considerable unreliability and ambiguity to target representation and data association. So discriminative and reliable target representation is vital for accurate data association in multi-tracking. Pervious works always combine bunch of features to increase the discriminative power, but this is prone to error accumulation and unnecessary computational cost, which may increase ambiguity on the contrary. Moreover, reliability of a same feature in different scenes may vary a lot, especially for currently widespread network cameras, which are settled in various and complex indoor scenes, previous fixed feature selection schemes cannot meet general requirements. To properly handle these problems, first, we propose a scene-adaptive hierarchical data association scheme, which adaptively selects features with higher reliability on target representation in the applied scene, and gradually combines features to the minimum requirement of discriminating ambiguous targets; second, a novel depth-invariant part-based appearance model using RGB-D data is proposed which makes the appearance model robust to scale change, partial occlusion and view-truncation. The introduce of RGB-D data increases the diversity of features, which provides more types of features for feature selection in data association and enhances the final multi-tracking performance. We validate our method from several aspects including scene-adaptive feature selection scheme, hierarchical data association scheme and RGB-D based appearance modeling scheme in various indoor scenes, which demonstrates its effectiveness and efficiency on improving multi-tracking performances in various indoor scenes.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1068828).
文摘Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the same person within one image,but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same.When tracking the same object using two or more images,there must be a way to determine that objects existing in different images are the same object.Therefore,this paper attempts to determine the same object present in different images using color information among the unique information of the object.Thus,this study proposes a multiple-object-tracking method using histogram stamp extraction in closed-circuit television applications.The proposed method determines the presence or absence of a target object in an image by comparing the similarity between the image containing the target object and other images.To this end,a unique color value of the target object is extracted based on its color distribution in the image using three methods:mean,mode,and interquartile range.The Top-N accuracy method is used to analyze the accuracy of each method,and the results show that the mean method had an accuracy of 93.5%(Top-2).Furthermore,the positive prediction value experimental results show that the accuracy of the mean method was 65.7%.As a result of the analysis,it is possible to detect and track the same object present in different images using the unique color of the object.Through the results,it is possible to track the same object that can minimize manpower without using personal information when detecting objects in different images.In the last response speed experiment,it was shown that when the mean was used,the color extraction of the object was possible in real time with 0.016954 s.Through this,it is possible to detect and track the same object in real time when using the proposed method.
基金supported by the Natural Science Foundation of Anhui Province(1708085QF149)。
文摘It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.
基金The National Natural Science Foundation of China(No. 60972001 )the Science and Technology Plan of Suzhou City(No. SG201076)
文摘An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.