Schizophrenia(SZ)is one of the most common mental diseases.Its main characteristics are abnormal social behavior and inability to correctly understand real things.In recent years,the magnetic resonance imaging(MRI)tec...Schizophrenia(SZ)is one of the most common mental diseases.Its main characteristics are abnormal social behavior and inability to correctly understand real things.In recent years,the magnetic resonance imaging(MRI)technique has been popularly utilized to study SZ.However,it is still a great challenge to reveal the essential information contained in the MRI data.In this paper,we proposed a biomarker selection approach based on the multiple hypothesis testing techniques to explore the difference between SZ and healthy controls by using both functional and structural MRI data,in which biomarkers represent both abnormal brain functional connectivity and abnormal brain regions.By implementing the biomarker selection approach,six abnormal brain regions and twenty-three abnormal functional connectivity in the brains of SZ are explored.It is discovered that compared with healthy controls,the significantly reduced gray matter volumes are mainly distributed in the limbic lobe and the basal ganglia,and the significantly increased gray matter volumes are distributed in the frontal gyrus.Meanwhile,it is revealed that the significantly strengthened connections are those between the middle frontal gyrus and the superior occipital gyrus,the superior occipital gyrus and the middle occipital gyrus as well as the middle occipital gyrus and the fusiform gyrus,and the rest connections are significantly weakened.展开更多
In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards...In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.展开更多
Nowadays,researchers are frequently confronted with challenges from massive data computing by a number of limitations of computer primary memory.Modal regression(MR)is a good alternative of the mean regression and lik...Nowadays,researchers are frequently confronted with challenges from massive data computing by a number of limitations of computer primary memory.Modal regression(MR)is a good alternative of the mean regression and likelihood based methods,because of its robustness and high efficiency.To this end,the authors extend MR to massive data analysis and propose a computationally and statistically efficient divide and conquer MR method(DC-MR).The major novelty of this method consists of splitting one entire dataset into several blocks,implementing the MR method on data in each block,and deriving final results through combining these regression results via a weighted average,which provides approximate estimates of regression results on the entire dataset.The proposed method significantly reduces the required amount of primary memory,and the resulting estimator is theoretically as efficient as the traditional MR on the entire data set.The authors also investigate a multiple hypothesis testing variable selection approach to select significant parametric components and prove the approach possessing the oracle property.In addition,the authors propose a practical modified modal expectation-maximization(MEM)algorithm for the proposed procedures.Numerical studies on simulated and real datasets are conducted to assess and showcase the practical and effective performance of our proposed methods.展开更多
基金This work was supported by NSFC(No.11471006 and No.81601456),Science and Technology Innovation Plan of Xi’an(No.2019421315KYPT004JC006)and the HPC Platform,Xi’an Jiaotong University.
文摘Schizophrenia(SZ)is one of the most common mental diseases.Its main characteristics are abnormal social behavior and inability to correctly understand real things.In recent years,the magnetic resonance imaging(MRI)technique has been popularly utilized to study SZ.However,it is still a great challenge to reveal the essential information contained in the MRI data.In this paper,we proposed a biomarker selection approach based on the multiple hypothesis testing techniques to explore the difference between SZ and healthy controls by using both functional and structural MRI data,in which biomarkers represent both abnormal brain functional connectivity and abnormal brain regions.By implementing the biomarker selection approach,six abnormal brain regions and twenty-three abnormal functional connectivity in the brains of SZ are explored.It is discovered that compared with healthy controls,the significantly reduced gray matter volumes are mainly distributed in the limbic lobe and the basal ganglia,and the significantly increased gray matter volumes are distributed in the frontal gyrus.Meanwhile,it is revealed that the significantly strengthened connections are those between the middle frontal gyrus and the superior occipital gyrus,the superior occipital gyrus and the middle occipital gyrus as well as the middle occipital gyrus and the fusiform gyrus,and the rest connections are significantly weakened.
基金supported in part by the National Basic Research Program of China(973 Program)under Grant 2013CB336600the Beijing Natural Science Foundation under Grant 4131003+1 种基金the National Natural Science Foundation of China under Grant{61201187,61422109}the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110
文摘In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.JBK1806002the National Natural Science Foundation of China under Grant No.11471264。
文摘Nowadays,researchers are frequently confronted with challenges from massive data computing by a number of limitations of computer primary memory.Modal regression(MR)is a good alternative of the mean regression and likelihood based methods,because of its robustness and high efficiency.To this end,the authors extend MR to massive data analysis and propose a computationally and statistically efficient divide and conquer MR method(DC-MR).The major novelty of this method consists of splitting one entire dataset into several blocks,implementing the MR method on data in each block,and deriving final results through combining these regression results via a weighted average,which provides approximate estimates of regression results on the entire dataset.The proposed method significantly reduces the required amount of primary memory,and the resulting estimator is theoretically as efficient as the traditional MR on the entire data set.The authors also investigate a multiple hypothesis testing variable selection approach to select significant parametric components and prove the approach possessing the oracle property.In addition,the authors propose a practical modified modal expectation-maximization(MEM)algorithm for the proposed procedures.Numerical studies on simulated and real datasets are conducted to assess and showcase the practical and effective performance of our proposed methods.