Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa...Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts.展开更多
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica...Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.展开更多
Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttin...Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.展开更多
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p...Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.展开更多
The purpose of this study was to examine the burnout levels of research assistants in Ondokuz Mayis University and to examine the results of multiple linear regression model based on the results obtained from Maslach ...The purpose of this study was to examine the burnout levels of research assistants in Ondokuz Mayis University and to examine the results of multiple linear regression model based on the results obtained from Maslach Burnout Scale with Jackknife Method in terms of validity and generalizability. To do this, a questionnaire was given to 11 research assistants working at Ondokuz Mayis University and the burnout scores of this questionnaire were taken as the dependent variable of the multiple linear regression model. The variable of burnout was explained with the variables of age, weekly hours of classes taught, monthly average credit card debt, numbers of published articles and reports, gender, marital status, number of children and the departments of the research assistants. Dummy variables were assigned to the variables of gender, marital status, number of children and the departments of the research assistants and thus, they were made quantitative. The significance of the model as a result of multiple linear regressions was examined through backward elimination method. After this, for the five explanatory variables which influenced the variable of burnout, standardized model coefficients and coefficients of determination, and 95% confidence intervals of these values were estimated through Jackknife Method and the generalizability of the parameter estimation results of these variables on population was researched.展开更多
In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and l...In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level展开更多
Anti-inflammatory activity of a series of tri-substituted pyrimidine derivatives was predicted using two Quantitative Structure-Activity Relationship models. These relationships were developed from molecular descripto...Anti-inflammatory activity of a series of tri-substituted pyrimidine derivatives was predicted using two Quantitative Structure-Activity Relationship models. These relationships were developed from molecular descriptors calculated using the DFT quantum chemistry method using the B3LYP/6-31G(d,p) level of theory and molecular lipophilicity. Thus, the four descriptors which are the dipole moment μ<sub>D</sub>, the energy of the highest occupied molecular orbital E<sub>HOMO</sub>, the isotropic polarizability α and the ACD/logP lipophilicity were selected for this purpose. The Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are respectively accredited with the following statistical indicators: R<sup>2</sup>=91.28%, R<sup>2</sup><sub>aj</sub>=89.11%, RMCE = 0.2831, R<sup>2</sup><sub>ext</sub>=86.50% and R<sup>2</sup>=98.22%, R<sup>2</sup><sub>aj</sub>=97.75%, RMCE = 0.1131, R<sup>2</sup><sub>ext</sub>=98.54%. The results obtained with the artificial neural network are better than those of the multiple linear regression. However, these results show that the two models developed have very good predictive performance of anti-inflammatory activity. These two models can therefore be used to predict anti-inflammatory activity of new similar pyrimidine derivatives.展开更多
This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis a...This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points.展开更多
Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and phys...Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and physical processes and interaction among them may affect the model performance drastically. Thus, to overcome this problem as well as to improve the strength of MLR, we proposed a hybrid approach, i.e., an Artificial Neural Network to the MLR coins as Artificial Neural Network-Multiple Linear Regression (ANN-MLR). To investigate the performance of the proposed model, we compared Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and proposed hybrid Artificial Neural Network and Multiple Linear Regression (ANN-MLR) in the prediction of chlorophyll-a (chl-a) concentration by statistical measurement which are MSE and MAE. Achieving our objectives of study, we used 4 parameters, i.e. temperature (°C), pH, salinity (ppt), DO (ppm) at the Offshore Kuala Terengganu, Terengganu, Malaysia. The results showed that our proposed model can improve the performance of the model as compared to ANN and MLR due to small errors generated, error reduced, and increased the correlation coefficient for all parameters in both MSE and MAE, respectively. Thus, this result indicated that our proposed model is efficient, precise and almost perfect correlation as compared to ANN and MLR.展开更多
Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR...Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR) and artificial neural network (ANN) techniques. A model with four descriptors, including Hydrogen-bonding donors HBD(R7), the partition coefficient between n-octanol and water logP and logP(R1) and Molecular weight MW(R7), showed good statistics both in the regression and artificial neural network with a configuration of (4-3-1) by using Bayesian and Leven-berg-Marquardt Methods. Comparison of the descriptor’s contribution obtained in MLR and ANN analysis shows that the contribution of some of the descriptors to activity may be non-linear.展开更多
In order to study the impact of employed persons in various industries on regional GDP,based on the data of GDP in various regions and employed persons divided by industries in various regions in 2019,the employed per...In order to study the impact of employed persons in various industries on regional GDP,based on the data of GDP in various regions and employed persons divided by industries in various regions in 2019,the employed persons are divided into seven categories,and the multiple linear regression model of GDP in various regions of China on employed persons in various industries is established by using the methods of multiple linear regression analysis and cluster analysis,It also analyzes the impact of employees in various industries on the GDP of various regions.展开更多
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ...In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.展开更多
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not...In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.展开更多
The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of elect...The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of electroless CoFeB films is a function of concentration of sodium tetrahydroborate, pH of the plating bath, plating temperature and the metallic ratio. The estimated regression coefficient, confidence interval, residual error and confidence interval were confirmed by computer program. The optimal composition of the plating bath was obtained and the dynamic electromagnetic parameters of films were measured in the 2-10 GHz range. At 2 GHz, the permeability, magnetic loss of the electroless CoFeB films were 304,76.6 respectively as the concentration of reducer is 1 g·L^-1.展开更多
Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the fiel...Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the field data of Liantong Road of Zibo city to verify the validity and the feasibility of the theory. The results show that change point method of multiple linear regression can make out the rule of quantitative changes in traffic flow more accurately than ordinary methods. So, the change point method can be applied to traffic information management system more effectively.展开更多
Estimation methods have over the years been a problem for Statistician especially in sectors that have to do with Hidden/Hard-to-Reach population. In this paper, a regression model was derived for Elusive/Hard-to-Reac...Estimation methods have over the years been a problem for Statistician especially in sectors that have to do with Hidden/Hard-to-Reach population. In this paper, a regression model was derived for Elusive/Hard-to-Reach/Hidden populations. This was achieved by modelling the Multiplicity Estimator given by Birnbaum and Sirken (1965) into a regression model. The paper also gave the least-squares estimation of the unknown parameters β0 and β1, and σ2.展开更多
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
文摘Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts.
基金the China Scholarship Council(CSC)(201903250115)the National Natural Science Foundation of China(31972515)the China Agriculture Research System of MOF and MARA(CARS-09-P31).
文摘Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.
文摘Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.
文摘Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.
文摘The purpose of this study was to examine the burnout levels of research assistants in Ondokuz Mayis University and to examine the results of multiple linear regression model based on the results obtained from Maslach Burnout Scale with Jackknife Method in terms of validity and generalizability. To do this, a questionnaire was given to 11 research assistants working at Ondokuz Mayis University and the burnout scores of this questionnaire were taken as the dependent variable of the multiple linear regression model. The variable of burnout was explained with the variables of age, weekly hours of classes taught, monthly average credit card debt, numbers of published articles and reports, gender, marital status, number of children and the departments of the research assistants. Dummy variables were assigned to the variables of gender, marital status, number of children and the departments of the research assistants and thus, they were made quantitative. The significance of the model as a result of multiple linear regressions was examined through backward elimination method. After this, for the five explanatory variables which influenced the variable of burnout, standardized model coefficients and coefficients of determination, and 95% confidence intervals of these values were estimated through Jackknife Method and the generalizability of the parameter estimation results of these variables on population was researched.
文摘In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level
文摘Anti-inflammatory activity of a series of tri-substituted pyrimidine derivatives was predicted using two Quantitative Structure-Activity Relationship models. These relationships were developed from molecular descriptors calculated using the DFT quantum chemistry method using the B3LYP/6-31G(d,p) level of theory and molecular lipophilicity. Thus, the four descriptors which are the dipole moment μ<sub>D</sub>, the energy of the highest occupied molecular orbital E<sub>HOMO</sub>, the isotropic polarizability α and the ACD/logP lipophilicity were selected for this purpose. The Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are respectively accredited with the following statistical indicators: R<sup>2</sup>=91.28%, R<sup>2</sup><sub>aj</sub>=89.11%, RMCE = 0.2831, R<sup>2</sup><sub>ext</sub>=86.50% and R<sup>2</sup>=98.22%, R<sup>2</sup><sub>aj</sub>=97.75%, RMCE = 0.1131, R<sup>2</sup><sub>ext</sub>=98.54%. The results obtained with the artificial neural network are better than those of the multiple linear regression. However, these results show that the two models developed have very good predictive performance of anti-inflammatory activity. These two models can therefore be used to predict anti-inflammatory activity of new similar pyrimidine derivatives.
基金Thank you for your valuable comments and suggestions.This research was supported by Yunnan applied basic research project(NO.2017FD150)Chuxiong Normal University General Research Project(NO.XJYB2001).
文摘This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points.
文摘Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and physical processes and interaction among them may affect the model performance drastically. Thus, to overcome this problem as well as to improve the strength of MLR, we proposed a hybrid approach, i.e., an Artificial Neural Network to the MLR coins as Artificial Neural Network-Multiple Linear Regression (ANN-MLR). To investigate the performance of the proposed model, we compared Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and proposed hybrid Artificial Neural Network and Multiple Linear Regression (ANN-MLR) in the prediction of chlorophyll-a (chl-a) concentration by statistical measurement which are MSE and MAE. Achieving our objectives of study, we used 4 parameters, i.e. temperature (°C), pH, salinity (ppt), DO (ppm) at the Offshore Kuala Terengganu, Terengganu, Malaysia. The results showed that our proposed model can improve the performance of the model as compared to ANN and MLR due to small errors generated, error reduced, and increased the correlation coefficient for all parameters in both MSE and MAE, respectively. Thus, this result indicated that our proposed model is efficient, precise and almost perfect correlation as compared to ANN and MLR.
基金The authors thank Centre National de la Recherche Sci-entifique et Technique(CNRST)for funding this project under the RS program.
文摘Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR) and artificial neural network (ANN) techniques. A model with four descriptors, including Hydrogen-bonding donors HBD(R7), the partition coefficient between n-octanol and water logP and logP(R1) and Molecular weight MW(R7), showed good statistics both in the regression and artificial neural network with a configuration of (4-3-1) by using Bayesian and Leven-berg-Marquardt Methods. Comparison of the descriptor’s contribution obtained in MLR and ANN analysis shows that the contribution of some of the descriptors to activity may be non-linear.
基金obtained the 2020 Yunnan College Students'innovation and entrepreneurship training program(No.:113912017)Chuxiong Normal University is supported by the school level general scientific research project(No.:XJYB2001).
文摘In order to study the impact of employed persons in various industries on regional GDP,based on the data of GDP in various regions and employed persons divided by industries in various regions in 2019,the employed persons are divided into seven categories,and the multiple linear regression model of GDP in various regions of China on employed persons in various industries is established by using the methods of multiple linear regression analysis and cluster analysis,It also analyzes the impact of employees in various industries on the GDP of various regions.
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
基金Supported by the Ministry of Environmental Protection of China(No.2011467037)
文摘In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.
文摘In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.
基金the National Natural Science Foundation of China(No.50371029
文摘The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of electroless CoFeB films is a function of concentration of sodium tetrahydroborate, pH of the plating bath, plating temperature and the metallic ratio. The estimated regression coefficient, confidence interval, residual error and confidence interval were confirmed by computer program. The optimal composition of the plating bath was obtained and the dynamic electromagnetic parameters of films were measured in the 2-10 GHz range. At 2 GHz, the permeability, magnetic loss of the electroless CoFeB films were 304,76.6 respectively as the concentration of reducer is 1 g·L^-1.
基金National Natural Science Foundations of China(No. 61074140,No. 60974094)Young Teacher Development Support Project of Shandong University of Technology,China
文摘Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the field data of Liantong Road of Zibo city to verify the validity and the feasibility of the theory. The results show that change point method of multiple linear regression can make out the rule of quantitative changes in traffic flow more accurately than ordinary methods. So, the change point method can be applied to traffic information management system more effectively.
文摘Estimation methods have over the years been a problem for Statistician especially in sectors that have to do with Hidden/Hard-to-Reach population. In this paper, a regression model was derived for Elusive/Hard-to-Reach/Hidden populations. This was achieved by modelling the Multiplicity Estimator given by Birnbaum and Sirken (1965) into a regression model. The paper also gave the least-squares estimation of the unknown parameters β0 and β1, and σ2.