Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into ...Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.展开更多
Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different roc...Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.展开更多
基金Shanghai Leading Academic Discipline Project,China(No.B602)
文摘Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.
基金Projects(51878567,51878568,51578458)supported by the National Natural Science Foundation of ChinaProjects(2017G007-F,2017G007-H)supported by China Railway Science and Technology Research and Development Plan。
文摘Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.