The existence of T_periodic solutions of the nonlinear system with multiple delays is studied. By using the topological degree method, sufficient conditions are obtained for the existence of T_periodic solutions. As a...The existence of T_periodic solutions of the nonlinear system with multiple delays is studied. By using the topological degree method, sufficient conditions are obtained for the existence of T_periodic solutions. As an application, the existence of positive periodic solution for a logarithmic population model is established under some conditions.展开更多
In this paper, the existence o f a positive periodic solution to the following neutral predator_prey system (t)=rH(t)1-a 1(t)H(t-τ)+a 2(t-τ)K-α(t)H(t)P(t), (t)=-b(t)P(t)+β(t)H(t)P(t) is studied,in which ...In this paper, the existence o f a positive periodic solution to the following neutral predator_prey system (t)=rH(t)1-a 1(t)H(t-τ)+a 2(t-τ)K-α(t)H(t)P(t), (t)=-b(t)P(t)+β(t)H(t)P(t) is studied,in which r,a 2,K and τ are positive constants, and a 1(t ),α(t),b(t) and β(t) are positive continuous functions of period ω .展开更多
In this paper, a nonautonomous periodic model of population with time delays and impulses, which arises in order to describe the control of a single population of cells, is studied. By the coincidence degree theory we...In this paper, a nonautonomous periodic model of population with time delays and impulses, which arises in order to describe the control of a single population of cells, is studied. By the coincidence degree theory we obtain the conditions for the existence of periodic solution of this system.展开更多
A two-species predator-prey system with time delay in a two-patch environment is investigated. By using a continuation theorem based on coincidence degree theory, we obtain some sufficient conditions for the existence...A two-species predator-prey system with time delay in a two-patch environment is investigated. By using a continuation theorem based on coincidence degree theory, we obtain some sufficient conditions for the existence of periodic solution for the system.展开更多
Existence and nonexistence criteria are established for the positive periodic solutions of two species population growth with periodic delay by applying continuation theorem of coincidence degree theory.
The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
By using the continuation theorem of coincidence theory, the existence of a positive periodic solution for a two patches competition system with diffusion and time delay and functional responsex [FK(W1*3/4。*2/3]...By using the continuation theorem of coincidence theory, the existence of a positive periodic solution for a two patches competition system with diffusion and time delay and functional responsex [FK(W1*3/4。*2/3]′ 1 (t)=x 1(t)a 1(t)-b 1(t)x 1(t)-c 1(t)y(t)1+m(t)x 1(t)+D 1(t)[x 2(t)-x 1(t)], x [FK(W1*3/4。*2/3]′ 2 (t)=x 2(t)a 2(t)-b 2(t)x 2(t)-c 2(t)∫ 0 -τ k(s)x 2(t+s) d s+D 2(t)[x 1(t)-x 2(t)], y′(t)=y(t)a 3(t)-b 3(t)y(t)-c 3(t)x 1(t)1+m(t)x 1(t)is established, where a i(t),b i(t),c i(t)(i=1,2,3),m(t) and D i(t)(i=1,2) are all positive periodic continuous functions with period w >0, τ is a nonnegative constant and k(s) is a continuous nonnegative function on [- τ ,0].展开更多
In this paper, a three species diffusive predator-prey model with functional response is studied, where all parameters are time dependent. By using the continuation theorem of coincidence degree theory, the existence ...In this paper, a three species diffusive predator-prey model with functional response is studied, where all parameters are time dependent. By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for this system is established.展开更多
This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions fo...This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.展开更多
The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2...The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2(t-τ 2)), x [FK(W1*1。*3/4]′ 2(t)=-b 0x α 2(t)+b 1f 2(x 1(t-τ 3),x 2(t-τ 4)).This approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions.展开更多
In this paper, the high order delay Duffing equation ax^(2n) +bx+g(x(t-r)) = p(t) are considered,using the theory of coincidence degree, the sufficient condition for its there being at least a 2π-periodic s...In this paper, the high order delay Duffing equation ax^(2n) +bx+g(x(t-r)) = p(t) are considered,using the theory of coincidence degree, the sufficient condition for its there being at least a 2π-periodic solution is obtained.展开更多
The existence of positive periodic solution of a generalized semi-ratio-dependent predator-prey system with time delay and impulse is studied by using the continuation theorem based on the coincidence degree theory. T...The existence of positive periodic solution of a generalized semi-ratio-dependent predator-prey system with time delay and impulse is studied by using the continuation theorem based on the coincidence degree theory. The permanence of the system is also considered. The results partially improve and extend some known criteria.展开更多
We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence de...We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.展开更多
The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1...The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions展开更多
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in...In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.展开更多
By using the continuation theorem of coincidence degree theory, sufficient conditions are obtained for the existence of positive periodic solutions of a delayed predator prey system with nonmonotonic functional respon...By using the continuation theorem of coincidence degree theory, sufficient conditions are obtained for the existence of positive periodic solutions of a delayed predator prey system with nonmonotonic functional response in a periodic environment.展开更多
By means of the continuation theorem of the coincidence degree theory,the existence of two periodic solutions of a delayed single species model with feedback regulation and harvest term is obtained.
A set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for delayed generalized predator-prey dispersion systemwhere ai(t),bi(t) and Di(t)(i = 1, 2) axe positive c...A set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for delayed generalized predator-prey dispersion systemwhere ai(t),bi(t) and Di(t)(i = 1, 2) axe positive continuous T-periodic functions, gi(t,xi) (i = 1,2) and h(t,y) are continuous and T-periodic with respect to t and h(t,y) > 0 for y>0,t, y∈R,pi(x)(i=1,2) are continuous and monotonously increasing functions, and Pi(xi)>0 for xi>0.展开更多
A class of oscillator of the EI Nifio-Southern oscillation model is considered. Using Mawhin's continuation theorem, a result on the existence of periodic solutions for ENSO model is obtained.
In this paper, higher dimensional periodic systems with delay of the form x′(t)=A(t,x(t))x(t)+f(t,x(t-τ)), x′(t)= grad G(x(t))+f(t,x(t-τ)) are considered. Using the coincidence degree method, some suffic...In this paper, higher dimensional periodic systems with delay of the form x′(t)=A(t,x(t))x(t)+f(t,x(t-τ)), x′(t)= grad G(x(t))+f(t,x(t-τ)) are considered. Using the coincidence degree method, some sufficient conditions to guarantee the existence of periodic solution for these systems are obtained. As an application of the results, the existence of a positive periodic solution for a logarithmic population model is proved.展开更多
文摘The existence of T_periodic solutions of the nonlinear system with multiple delays is studied. By using the topological degree method, sufficient conditions are obtained for the existence of T_periodic solutions. As an application, the existence of positive periodic solution for a logarithmic population model is established under some conditions.
文摘In this paper, the existence o f a positive periodic solution to the following neutral predator_prey system (t)=rH(t)1-a 1(t)H(t-τ)+a 2(t-τ)K-α(t)H(t)P(t), (t)=-b(t)P(t)+β(t)H(t)P(t) is studied,in which r,a 2,K and τ are positive constants, and a 1(t ),α(t),b(t) and β(t) are positive continuous functions of period ω .
文摘In this paper, a nonautonomous periodic model of population with time delays and impulses, which arises in order to describe the control of a single population of cells, is studied. By the coincidence degree theory we obtain the conditions for the existence of periodic solution of this system.
文摘A two-species predator-prey system with time delay in a two-patch environment is investigated. By using a continuation theorem based on coincidence degree theory, we obtain some sufficient conditions for the existence of periodic solution for the system.
文摘Existence and nonexistence criteria are established for the positive periodic solutions of two species population growth with periodic delay by applying continuation theorem of coincidence degree theory.
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
文摘By using the continuation theorem of coincidence theory, the existence of a positive periodic solution for a two patches competition system with diffusion and time delay and functional responsex [FK(W1*3/4。*2/3]′ 1 (t)=x 1(t)a 1(t)-b 1(t)x 1(t)-c 1(t)y(t)1+m(t)x 1(t)+D 1(t)[x 2(t)-x 1(t)], x [FK(W1*3/4。*2/3]′ 2 (t)=x 2(t)a 2(t)-b 2(t)x 2(t)-c 2(t)∫ 0 -τ k(s)x 2(t+s) d s+D 2(t)[x 1(t)-x 2(t)], y′(t)=y(t)a 3(t)-b 3(t)y(t)-c 3(t)x 1(t)1+m(t)x 1(t)is established, where a i(t),b i(t),c i(t)(i=1,2,3),m(t) and D i(t)(i=1,2) are all positive periodic continuous functions with period w >0, τ is a nonnegative constant and k(s) is a continuous nonnegative function on [- τ ,0].
文摘In this paper, a three species diffusive predator-prey model with functional response is studied, where all parameters are time dependent. By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for this system is established.
文摘This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.
文摘The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2(t-τ 2)), x [FK(W1*1。*3/4]′ 2(t)=-b 0x α 2(t)+b 1f 2(x 1(t-τ 3),x 2(t-τ 4)).This approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions.
文摘In this paper, the high order delay Duffing equation ax^(2n) +bx+g(x(t-r)) = p(t) are considered,using the theory of coincidence degree, the sufficient condition for its there being at least a 2π-periodic solution is obtained.
文摘The existence of positive periodic solution of a generalized semi-ratio-dependent predator-prey system with time delay and impulse is studied by using the continuation theorem based on the coincidence degree theory. The permanence of the system is also considered. The results partially improve and extend some known criteria.
基金Supported by the China Postdoctoral Science Foundation (20060400267)
文摘We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.
基金Supported by the National Natural Science Foundation of China(1 9971 0 2 6 )
文摘The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions
基金Project supported by Foundation of Major Project of ScienceTechnology of Chinese Education Ministy,NSF of Education Committee of Jiangsu Province
文摘In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
文摘By using the continuation theorem of coincidence degree theory, sufficient conditions are obtained for the existence of positive periodic solutions of a delayed predator prey system with nonmonotonic functional response in a periodic environment.
基金Supported by the Science and Technical Foundation to Hubei University of Technology[2006(5)]
文摘By means of the continuation theorem of the coincidence degree theory,the existence of two periodic solutions of a delayed single species model with feedback regulation and harvest term is obtained.
基金The project is supported by Youth Project Foundation of Hubei Education Department (2002B00002)the Scientific Research Foundation of Hubei Normal University(2003).
文摘A set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for delayed generalized predator-prey dispersion systemwhere ai(t),bi(t) and Di(t)(i = 1, 2) axe positive continuous T-periodic functions, gi(t,xi) (i = 1,2) and h(t,y) are continuous and T-periodic with respect to t and h(t,y) > 0 for y>0,t, y∈R,pi(x)(i=1,2) are continuous and monotonously increasing functions, and Pi(xi)>0 for xi>0.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40676016)the Natural Science Foundationof Jiangsu Province of China (Grant Nos. BK2009105 and BK2008119)+2 种基金the Natural Science Foundation of Jiangsu Education Committee,China (Grant Nos. 09kjd110001 and 08kjb110011)Key Natural Science Foundation by the Bureau of Education of Anhui Province of China (Grant No. KJ2008A05ZC)Jiangsu Teachers University of Technology Foundation (Grant No. KYY08033)
文摘A class of oscillator of the EI Nifio-Southern oscillation model is considered. Using Mawhin's continuation theorem, a result on the existence of periodic solutions for ENSO model is obtained.
文摘In this paper, higher dimensional periodic systems with delay of the form x′(t)=A(t,x(t))x(t)+f(t,x(t-τ)), x′(t)= grad G(x(t))+f(t,x(t-τ)) are considered. Using the coincidence degree method, some sufficient conditions to guarantee the existence of periodic solution for these systems are obtained. As an application of the results, the existence of a positive periodic solution for a logarithmic population model is proved.