The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
This study developed empirical-mathematical models to predict the California Bearing Ratio (CBR) using soil index properties in Ogbia-Nembe road in the Niger Delta region of Nigeria. The determination of CBR of soil i...This study developed empirical-mathematical models to predict the California Bearing Ratio (CBR) using soil index properties in Ogbia-Nembe road in the Niger Delta region of Nigeria. The determination of CBR of soil is a laborious operation that requires a longer time and materials leading to increased cost and schedule;this can be reduced by adopting an empirical-mathematical model that can predict the CBR using other simpler soil index properties such as Plastic Limit (PL), the Liquid Limit (LL), the Plasticity Index (PI) and the Moisture Content (MC), which are less laborious and take lesser time to obtain. Thirteen models were developed to understand the relationship between these soil index properties: the independent variable and the California Bearing Ratio (CBR): the dependent variable;Six linear, Six quadratic and One multiple linear regression models were developed for this relationship. Analysis of variance (ANOVA) on the thirteen models showed that the Optimum Moisture Content (OMC) and the Maximum Dry Density (MDD) are better independent variables for the prediction of the CBR value of Ogbia-Nembe soil generating a quadratic model and a multiple linear regression model having a better coefficient of determination R<sup>2</sup> = 0.96 and 0.94 respectively, mean square error (MSE) of 0.74 and 1.152 respectively with Root mean square errors of 0.861 and 1.073 accordingly. These models were used to predict the CBR of the soil. The CBR values predicted by the model were further compared with those of the actual experimental test and found to be relatively consistent with minimal variance. This establishes that CBR of any soil can be predicted from the Index Property of the soil and this is more economical and takes lesser time and can be universally adopted for soil investigation.展开更多
This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are ...This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.展开更多
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘This study developed empirical-mathematical models to predict the California Bearing Ratio (CBR) using soil index properties in Ogbia-Nembe road in the Niger Delta region of Nigeria. The determination of CBR of soil is a laborious operation that requires a longer time and materials leading to increased cost and schedule;this can be reduced by adopting an empirical-mathematical model that can predict the CBR using other simpler soil index properties such as Plastic Limit (PL), the Liquid Limit (LL), the Plasticity Index (PI) and the Moisture Content (MC), which are less laborious and take lesser time to obtain. Thirteen models were developed to understand the relationship between these soil index properties: the independent variable and the California Bearing Ratio (CBR): the dependent variable;Six linear, Six quadratic and One multiple linear regression models were developed for this relationship. Analysis of variance (ANOVA) on the thirteen models showed that the Optimum Moisture Content (OMC) and the Maximum Dry Density (MDD) are better independent variables for the prediction of the CBR value of Ogbia-Nembe soil generating a quadratic model and a multiple linear regression model having a better coefficient of determination R<sup>2</sup> = 0.96 and 0.94 respectively, mean square error (MSE) of 0.74 and 1.152 respectively with Root mean square errors of 0.861 and 1.073 accordingly. These models were used to predict the CBR of the soil. The CBR values predicted by the model were further compared with those of the actual experimental test and found to be relatively consistent with minimal variance. This establishes that CBR of any soil can be predicted from the Index Property of the soil and this is more economical and takes lesser time and can be universally adopted for soil investigation.
基金supported by the National Natural Science Foundation of China under Grant Nos.11471029,11101014,61273221 and 11171010the Beijing Natural Science Foundation under Grant Nos.1142002 and 1112001+1 种基金the Science and Technology Project of Beijing Municipal Education Commission under Grant No.KM201410005010the Research Fund for the Doctoral Program of Beijing University of Technology under Grant No.006000543114550
文摘This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.