BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c...BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.展开更多
BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one han...BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value.展开更多
The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate ...The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data.展开更多
BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression an...BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.展开更多
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods trea...Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.展开更多
Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods trea...Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.展开更多
Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int...Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends.展开更多
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d...Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis.展开更多
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ...The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr...Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties.展开更多
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature...In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th...The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.展开更多
●Multiple evanescent white dot syndrome(MEWDS)is a rare fundus disease,characterized by acute vision loss and visual field defects.Many previous studies have explained the possible pathogenesis and clinical features ...●Multiple evanescent white dot syndrome(MEWDS)is a rare fundus disease,characterized by acute vision loss and visual field defects.Many previous studies have explained the possible pathogenesis and clinical features of primary MEWDS.However,as the number of reported cases increases,secondary MEWDS occurs in other related retinal diseases and injuries,exhibiting some special characteristics.The associated retinal diseases include multifocal choroiditis/punctate inner choroidopathy(MFC/PIC),acute zonal occult outer retinopathy,best vitelliform macular dystrophy,pseudoxanthoma elasticum,and ocular toxoplasmosis.The related retinal injury is laser photocoagulation,surgery,and trauma.Although primary MEWDS often have a self-limiting course,secondary MEWDS may require treatment in some cases,according to the severity of concomitant diseases and complications.Notably,MEWDS secondary to MFC/PIC that is prone to forming choroidal neovascularization and focal choroidal excavation,needs positive treatment with corticosteroids.The possible underlying pathogenesis of secondary MEWDS is the exposure of choroidal antigen after the disruption of Bruch’s membrane.The MEWDS-related features in secondary MEWDS are still evanescent under most circumstances.Its prognosis and treatment depend on the severity of complications.Current studies propose that the etiology is associated with immune factors,including viral infection,inflammation in choroid and Bruch’s membrane,and antigen exposure caused by retinal and/or choroidal insults.More pathogenic studies should be conducted in the future.Accurate diagnosis for secondary MEWDS could benefit patients in aspects of management and prognosis.展开更多
The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Obj...The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Object Model(DOM)based parsing,the performance degrades due to sequential processing and large memory requirements,thereby requiring an efficient XML parser to mitigate these issues.In this paper,we propose a Parallel XML Tree Generator(PXTG)algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework(RXPF)that analyzes and predicts performance through profiling,regression,and code generation for efficient parsing.The PXTG algorithm is based on dividing the XML file into n parts and producing n trees in parallel.The profiling phase of the RXPF framework produces a dataset by measuring the performance of various parsing models including StAX,SAX,DOM,JDOM,and PXTG on different cores by using multiple file sizes.The regression phase produces the prediction model,based on which the final code for efficient parsing of XML files is produced through the code generation phase.The RXPF framework has shown a significant improvement in performance varying from 9.54%to 32.34%over other existing models used for parsing XML files.展开更多
Introduction: Infections are additional factors of morbidity and mortality in multiple myeloma (MM), and the current recommendation is antibiotic prophylaxis. In sub-Saharan Africa, few data on infectious complication...Introduction: Infections are additional factors of morbidity and mortality in multiple myeloma (MM), and the current recommendation is antibiotic prophylaxis. In sub-Saharan Africa, few data on infectious complications of MM are available. We aim to describe the microbiological features of infections in MM, and their impact on survival in Senegalese patients. Methods: A retrospective (January 2005-January 2022), analytic, multicenter study on infections in patients followed for MM (IMWG criteria) in Senegalese clinical hematology services. The socio-epidemiological, diagnostic, microbiological, evolutionary and survival aspects were analyzed. Results: The study included 106 patients with multiple myeloma who had an infection at admission or during the treatment. Ten patients have the comorbidity (hypertension, lupus, type 2 diabetes). These patients had 136 infectious events identified at diagnosis (79.2%) or during chemotherapy (20.8%). The sites of infection are lung (42.6%), urinary (29.4%), dermatological (6.6%), digestive (5.2%), osteoarticular (4.4%), ear, nose and throat (3.7%), central nervous system (1.5%), or without site. We recorded 26.4% of patients with multi-site infections. The causal pathogens are bacteria (Gram-negative bacilli: 22.1%;Gram positive bacilli: 9.5%, Mycobacterium tuberculosis: 13.3%), parasitique (plasmodium falciparum 6.6%), viruses (SARS-COV2: 2.9%, VZV: 2.2%) and fungal (2.9%). Survival was reduced in patients who had an infection at the time of multiple myeloma diagnosis (p: 0.189) and those who had multiple infectious foci (p: 0.011). Conclusion: Infections in multiple myeloma are more frequent at diagnosis. The germs are varied and mostly bacteria, particularly gram-negative bacteria, and Kochs bacillus. Our study reveals that multiple infectious foci are a poor prognosis factor. It is necessary to evaluate the infectious risk early, and to adopt an antibiotic prophylaxis based on our tropical environment.展开更多
文摘BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.
文摘BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value.
基金Under the auspices of National Natural Science Foundation of China(No.42101414)Natural Science Found for Outstanding Young Scholars in Jilin Province(No.20230508106RC)。
文摘The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data.
文摘BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
文摘Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.
文摘Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.
基金This work was supported by the 2021 Project of the“14th Five-Year Plan”of Shaanxi Education Science“Research on the Application of Educational Data Mining in Applied Undergraduate Teaching-Taking the Course of‘Computer Application Technology’as an Example”(SGH21Y0403)the Teaching Reform and Research Projects for Practical Teaching in 2022“Research on Practical Teaching of Applied Undergraduate Projects Based on‘Combination of Courses and Certificates”-Taking Computer Application Technology Courses as an Example”(SJJG02012)the 11th batch of Teaching Reform Research Project of Xi’an Jiaotong University City College“Project-Driven Cultivation and Research on Information Literacy of Applied Undergraduate Students in the Information Times-Taking Computer Application Technology Course Teaching as an Example”(111001).
文摘Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends.
文摘Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U2106223,51979193,52301352)。
文摘The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
文摘Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties.
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(2015JM5204)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(Z2015064)supported by the Graduate Starting Seed Fund of the Northwestern Polytechnical University,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
基金supported by the National Natural Science Foundation of China(52074180)the Science and Technology Major Project of Yunnan Province(202302AB080020)+2 种基金the Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2023-Z07)the Science and Technology Commission of Shanghai Municipality(19DZ2270200)the Program for Professor of Special Appointment(Eastern Scholar)at SIHL,Shanghai Sailing Program(19YF1416500).
文摘The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.
基金Supported by the National Natural Science Foundation of China(No.82171073No.82101147).
文摘●Multiple evanescent white dot syndrome(MEWDS)is a rare fundus disease,characterized by acute vision loss and visual field defects.Many previous studies have explained the possible pathogenesis and clinical features of primary MEWDS.However,as the number of reported cases increases,secondary MEWDS occurs in other related retinal diseases and injuries,exhibiting some special characteristics.The associated retinal diseases include multifocal choroiditis/punctate inner choroidopathy(MFC/PIC),acute zonal occult outer retinopathy,best vitelliform macular dystrophy,pseudoxanthoma elasticum,and ocular toxoplasmosis.The related retinal injury is laser photocoagulation,surgery,and trauma.Although primary MEWDS often have a self-limiting course,secondary MEWDS may require treatment in some cases,according to the severity of concomitant diseases and complications.Notably,MEWDS secondary to MFC/PIC that is prone to forming choroidal neovascularization and focal choroidal excavation,needs positive treatment with corticosteroids.The possible underlying pathogenesis of secondary MEWDS is the exposure of choroidal antigen after the disruption of Bruch’s membrane.The MEWDS-related features in secondary MEWDS are still evanescent under most circumstances.Its prognosis and treatment depend on the severity of complications.Current studies propose that the etiology is associated with immune factors,including viral infection,inflammation in choroid and Bruch’s membrane,and antigen exposure caused by retinal and/or choroidal insults.More pathogenic studies should be conducted in the future.Accurate diagnosis for secondary MEWDS could benefit patients in aspects of management and prognosis.
文摘The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Object Model(DOM)based parsing,the performance degrades due to sequential processing and large memory requirements,thereby requiring an efficient XML parser to mitigate these issues.In this paper,we propose a Parallel XML Tree Generator(PXTG)algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework(RXPF)that analyzes and predicts performance through profiling,regression,and code generation for efficient parsing.The PXTG algorithm is based on dividing the XML file into n parts and producing n trees in parallel.The profiling phase of the RXPF framework produces a dataset by measuring the performance of various parsing models including StAX,SAX,DOM,JDOM,and PXTG on different cores by using multiple file sizes.The regression phase produces the prediction model,based on which the final code for efficient parsing of XML files is produced through the code generation phase.The RXPF framework has shown a significant improvement in performance varying from 9.54%to 32.34%over other existing models used for parsing XML files.
文摘Introduction: Infections are additional factors of morbidity and mortality in multiple myeloma (MM), and the current recommendation is antibiotic prophylaxis. In sub-Saharan Africa, few data on infectious complications of MM are available. We aim to describe the microbiological features of infections in MM, and their impact on survival in Senegalese patients. Methods: A retrospective (January 2005-January 2022), analytic, multicenter study on infections in patients followed for MM (IMWG criteria) in Senegalese clinical hematology services. The socio-epidemiological, diagnostic, microbiological, evolutionary and survival aspects were analyzed. Results: The study included 106 patients with multiple myeloma who had an infection at admission or during the treatment. Ten patients have the comorbidity (hypertension, lupus, type 2 diabetes). These patients had 136 infectious events identified at diagnosis (79.2%) or during chemotherapy (20.8%). The sites of infection are lung (42.6%), urinary (29.4%), dermatological (6.6%), digestive (5.2%), osteoarticular (4.4%), ear, nose and throat (3.7%), central nervous system (1.5%), or without site. We recorded 26.4% of patients with multi-site infections. The causal pathogens are bacteria (Gram-negative bacilli: 22.1%;Gram positive bacilli: 9.5%, Mycobacterium tuberculosis: 13.3%), parasitique (plasmodium falciparum 6.6%), viruses (SARS-COV2: 2.9%, VZV: 2.2%) and fungal (2.9%). Survival was reduced in patients who had an infection at the time of multiple myeloma diagnosis (p: 0.189) and those who had multiple infectious foci (p: 0.011). Conclusion: Infections in multiple myeloma are more frequent at diagnosis. The germs are varied and mostly bacteria, particularly gram-negative bacteria, and Kochs bacillus. Our study reveals that multiple infectious foci are a poor prognosis factor. It is necessary to evaluate the infectious risk early, and to adopt an antibiotic prophylaxis based on our tropical environment.