How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS consi...How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.展开更多
In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure ...In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as a...A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as an interacting dynamic system in order to study the dynamic interaction between the various parts of the system and the optimal parameter matching among the above mentioned parts. The following random factors are taken into account in this paper. road surface excitation. rocket mass center misalignment, thrust misalignment, dynamic of the rocket, and the cross wind. Based on this unified model, a computer simulation software is developed, some simulation work has been carried out, and certain beneficial results have been achieved.展开更多
This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulat...This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulation.Taking a ground-borne multiple launch rocket systems(MLRS),the focus is on the launching subsystem comprising the rocket,flexible tube,and tube tail.The launching subsystem is treated as a coupled rigid-flexible multibody system,where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion.Firstly,the tube and tube tail can be elegantly handled by the MSTMM,a computationally efficient order-N formulation.Then,the equation of motion of the in-bore rocket with relative kinematics w.r.t.the tube using the Newton-Euler method is derived.Finally,the rocket,tube,and tube tail dynamics are coupled,yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems.The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks,self-propelled artilleries,and other air-borne and naval-borne weapons undergoing large motion.Numerical simulation results of LDMF are given and partially verified by the experiment.展开更多
基金National Natural Science Foundation of China(Grant Nos.11972193 and 92266201)。
文摘How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.
文摘In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.
文摘A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as an interacting dynamic system in order to study the dynamic interaction between the various parts of the system and the optimal parameter matching among the above mentioned parts. The following random factors are taken into account in this paper. road surface excitation. rocket mass center misalignment, thrust misalignment, dynamic of the rocket, and the cross wind. Based on this unified model, a computer simulation software is developed, some simulation work has been carried out, and certain beneficial results have been achieved.
基金The research is financially supported by the National Natural Science Foundation of China(No.11972193).
文摘This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulation.Taking a ground-borne multiple launch rocket systems(MLRS),the focus is on the launching subsystem comprising the rocket,flexible tube,and tube tail.The launching subsystem is treated as a coupled rigid-flexible multibody system,where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion.Firstly,the tube and tube tail can be elegantly handled by the MSTMM,a computationally efficient order-N formulation.Then,the equation of motion of the in-bore rocket with relative kinematics w.r.t.the tube using the Newton-Euler method is derived.Finally,the rocket,tube,and tube tail dynamics are coupled,yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems.The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks,self-propelled artilleries,and other air-borne and naval-borne weapons undergoing large motion.Numerical simulation results of LDMF are given and partially verified by the experiment.