In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b...In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.展开更多
为解决通道不一致性对传统极化敏感阵列长矢量模型的测向精度影响及传统长矢量多重信号分类(multiple signal classification,MUSIC)算法实时性不高的问题,本文在传统极化敏感测向系统基础上,在阵列中心增加一个标量平面螺旋天线,利用...为解决通道不一致性对传统极化敏感阵列长矢量模型的测向精度影响及传统长矢量多重信号分类(multiple signal classification,MUSIC)算法实时性不高的问题,本文在传统极化敏感测向系统基础上,在阵列中心增加一个标量平面螺旋天线,利用其天线方向图的增益稳定性,作为内部源对其他矢量通道不一致性进行实时校正;然后将结合标量圆阵和快速傅里叶变换(fastFouriertransform,FFT)的快速MUSIC算法推广到矢量阵列,提出降维快速极化MUSIC算法.仿真结果验证了此误差校正方法的有效性,且快速算法在保证测角精度前提下有效提高了算法实时性.本文为极化敏感阵列测向提供了一种误差校正方法及一种快速实用的测向算法.展开更多
针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达...针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达方位估计方法。该方法首先根据阵列接收数据的协方差矩阵及其翻转矩阵来构造新协方差矩阵,并利用新协方差矩阵构造Toeplitz矩阵,然后对其进行特征值分解,得到Toeplitz矩阵的噪声子空间,利用噪声子空间求出信号空间谱,通过谱峰搜索估计入射信号的方位角。文中方法拓展了阵列孔径,增加了可估计相干信号的数量,提升了方位估计的性能,提高了阵列的空间分辨率。仿真和湖上实验数据处理结果表明,文中方法可估计出更多的相干信号,而且在低信噪比、少快拍以及信号入射角度间隔较小时仍然具有良好的方位估计性能。展开更多
利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC...利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。展开更多
由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进...由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。展开更多
多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,...多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,通过分析MUSIC算法中各个步骤的计算特点,提出了一种算法的实现方法,并在现场可编程门阵列(field programmable gate array,FPGA)上完成了各个模块硬件电路的设计验证。该方法利用矩阵元素行列序号的对称性,得到了一种计算协方差矩阵的并行化分解方案;采用阈值比较法提高特征分解速度的同时,避免了最值求解,降低了硬件复杂度;在谱峰搜索中使用分步搜索法来提高实时性,并设计了专用硬件电路计算方向向量,以节省存储资源和避免数据读取延时带来的性能损失;与传统实现方法相比,实现了高精度和高实时性的统一。实验结果表明,该方法中的硬件实现方案在100 MHz工作频率的FPGA芯片上,完成一次精度为0.1°的二维DOA估计耗时3~5ms,具有精度高、速度快、资源消耗少的优势。展开更多
为了降低波束域多重信号分类(multiple signal classification,MUSIC)算法估计接收信号到达时间(time of ar-rival,TOA)的计算复杂度,提高算法的抗噪性能,提出一种基于TK算子(Teager-Kaiser operator)的改进算法。利用TK算子对数据瞬时...为了降低波束域多重信号分类(multiple signal classification,MUSIC)算法估计接收信号到达时间(time of ar-rival,TOA)的计算复杂度,提高算法的抗噪性能,提出一种基于TK算子(Teager-Kaiser operator)的改进算法。利用TK算子对数据瞬时变化敏感的特性,将接收信号与参考信号的相关函数经过TK算子处理,估计出波束域转换矩阵和波束域输出数据,再用MUSIC时延估计算法估计TOA。仿真结果说明,该方法比波束域MUSIC时延估计算法计算量小,并更好地抑制了多径信号噪声影响,高分辨率的估计性能得到了明显改善。展开更多
针对涡街流量计高实时性、高精度的要求,提出一种基于有限域实值多重信号分类(multiple signal classification,MUSIC)法的涡街信号处理方法.该方法利用能量重心校正法对涡街信号幅度谱进行频率校正,确定频率搜索域;利用实值MUSIC法快...针对涡街流量计高实时性、高精度的要求,提出一种基于有限域实值多重信号分类(multiple signal classification,MUSIC)法的涡街信号处理方法.该方法利用能量重心校正法对涡街信号幅度谱进行频率校正,确定频率搜索域;利用实值MUSIC法快速得到谱峰频率值,通过牛顿迭代法对谱峰频率值进行计算,以达到提高频率估计精度的目的.仿真结果表明:该改进方法的频率估计精度较MUSIC法提高了0.1%,实时性高,满足涡街流量计高精度与高实时性要求.展开更多
随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GT...随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GTD散射中心参数对刻画目标散射特性犹为重要。针对经典多重信号分类(multiple signal classification,MUSIC)法仅利用目标原始回波数据、参数估计精度不高这一问题,提出一种改进的MUSIC算法对散射参数估计提取。改进的MUSIC算法通过对原始回波数据取共轭,构建新的总协方差矩阵,有效利用了目标原始回波数据的共轭信息。仿真结果表明,与经典MUSIC算法相比,改进的MUSIC算法参数估计精度更高,雷达散射截面重构拟合程度更好,且运算量增加不大,可有效提取出隐身目标的散射中心。展开更多
文摘In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.
文摘为解决通道不一致性对传统极化敏感阵列长矢量模型的测向精度影响及传统长矢量多重信号分类(multiple signal classification,MUSIC)算法实时性不高的问题,本文在传统极化敏感测向系统基础上,在阵列中心增加一个标量平面螺旋天线,利用其天线方向图的增益稳定性,作为内部源对其他矢量通道不一致性进行实时校正;然后将结合标量圆阵和快速傅里叶变换(fastFouriertransform,FFT)的快速MUSIC算法推广到矢量阵列,提出降维快速极化MUSIC算法.仿真结果验证了此误差校正方法的有效性,且快速算法在保证测角精度前提下有效提高了算法实时性.本文为极化敏感阵列测向提供了一种误差校正方法及一种快速实用的测向算法.
文摘针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达方位估计方法。该方法首先根据阵列接收数据的协方差矩阵及其翻转矩阵来构造新协方差矩阵,并利用新协方差矩阵构造Toeplitz矩阵,然后对其进行特征值分解,得到Toeplitz矩阵的噪声子空间,利用噪声子空间求出信号空间谱,通过谱峰搜索估计入射信号的方位角。文中方法拓展了阵列孔径,增加了可估计相干信号的数量,提升了方位估计的性能,提高了阵列的空间分辨率。仿真和湖上实验数据处理结果表明,文中方法可估计出更多的相干信号,而且在低信噪比、少快拍以及信号入射角度间隔较小时仍然具有良好的方位估计性能。
文摘利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。
文摘由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。
文摘多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,通过分析MUSIC算法中各个步骤的计算特点,提出了一种算法的实现方法,并在现场可编程门阵列(field programmable gate array,FPGA)上完成了各个模块硬件电路的设计验证。该方法利用矩阵元素行列序号的对称性,得到了一种计算协方差矩阵的并行化分解方案;采用阈值比较法提高特征分解速度的同时,避免了最值求解,降低了硬件复杂度;在谱峰搜索中使用分步搜索法来提高实时性,并设计了专用硬件电路计算方向向量,以节省存储资源和避免数据读取延时带来的性能损失;与传统实现方法相比,实现了高精度和高实时性的统一。实验结果表明,该方法中的硬件实现方案在100 MHz工作频率的FPGA芯片上,完成一次精度为0.1°的二维DOA估计耗时3~5ms,具有精度高、速度快、资源消耗少的优势。
文摘为了降低波束域多重信号分类(multiple signal classification,MUSIC)算法估计接收信号到达时间(time of ar-rival,TOA)的计算复杂度,提高算法的抗噪性能,提出一种基于TK算子(Teager-Kaiser operator)的改进算法。利用TK算子对数据瞬时变化敏感的特性,将接收信号与参考信号的相关函数经过TK算子处理,估计出波束域转换矩阵和波束域输出数据,再用MUSIC时延估计算法估计TOA。仿真结果说明,该方法比波束域MUSIC时延估计算法计算量小,并更好地抑制了多径信号噪声影响,高分辨率的估计性能得到了明显改善。
文摘针对涡街流量计高实时性、高精度的要求,提出一种基于有限域实值多重信号分类(multiple signal classification,MUSIC)法的涡街信号处理方法.该方法利用能量重心校正法对涡街信号幅度谱进行频率校正,确定频率搜索域;利用实值MUSIC法快速得到谱峰频率值,通过牛顿迭代法对谱峰频率值进行计算,以达到提高频率估计精度的目的.仿真结果表明:该改进方法的频率估计精度较MUSIC法提高了0.1%,实时性高,满足涡街流量计高精度与高实时性要求.
文摘随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GTD散射中心参数对刻画目标散射特性犹为重要。针对经典多重信号分类(multiple signal classification,MUSIC)法仅利用目标原始回波数据、参数估计精度不高这一问题,提出一种改进的MUSIC算法对散射参数估计提取。改进的MUSIC算法通过对原始回波数据取共轭,构建新的总协方差矩阵,有效利用了目标原始回波数据的共轭信息。仿真结果表明,与经典MUSIC算法相比,改进的MUSIC算法参数估计精度更高,雷达散射截面重构拟合程度更好,且运算量增加不大,可有效提取出隐身目标的散射中心。