The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进...由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。展开更多
近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱...近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.展开更多
在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过...在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过求互协方差等运算,得到新的数据协方差矩阵。同时,对该算法和传统的MUSIC算法进行了仿真,对其DOA(Direction-of-Arrival)估计性能进行比较。仿真实验表明,改进后的算法在相干信源的情况下具有很好的去相干性能,而且没有阵列孔径的损失。能精确地估计信号的波达方向。展开更多
实值处理具有降低高自由度多输入多输出(multiple-input multiple-output,MIMO)雷达角度估计大计算量的优势。但受制于阵列的共轭对称性,对于任意阵列结构的双基地MIMO雷达发射角(direction of departure,DOD)和接收角(direction of arr...实值处理具有降低高自由度多输入多输出(multiple-input multiple-output,MIMO)雷达角度估计大计算量的优势。但受制于阵列的共轭对称性,对于任意阵列结构的双基地MIMO雷达发射角(direction of departure,DOD)和接收角(direction of arrival,DOA)联合估计,若不做附加的预处理则无法实现实值操作,故将常规阵列实值处理的多重信号分类(multiple signal classification,MUSIC)超分辨算法推广至任意阵列结构的双基地MIMO雷达。首先根据MIMO雷达的导向矢量共轭与镜像的对等性,提取接收信号协方差矩阵的实部,并对其进行特征分解得到"目标加倍"的信号子空间及其应对的噪声子空间;然后利用Kronecker积的特性对其进行降维处理,得到搜索区域减半的一维半实值域MUSIC谱,取出目标DOD真值与其镜像代入降维Capon算法来剔除虚拟峰值得到目标DOD估计真值;最后利用特征矢量得到模糊DOA估计值,采用方向余弦差最小范数方法得到目标DOA无模糊估计值。本文算法估计性能与一维搜索复数域MUSIC相当,计算量约降50%,且能够实现DOD和DOA的自动配对。仿真结果证明了该算法的有效性。展开更多
针对相关滤波等经典频域分析方法提取动不平衡信号时,近频干扰抑制能力及参数估计精度严重依赖数据长度的问题,提出了一种基于残差MUSIC(multiple signal classification)谱分析的正弦参数估计方法,以残差MISIC谱中给定频率点的幅度值...针对相关滤波等经典频域分析方法提取动不平衡信号时,近频干扰抑制能力及参数估计精度严重依赖数据长度的问题,提出了一种基于残差MUSIC(multiple signal classification)谱分析的正弦参数估计方法,以残差MISIC谱中给定频率点的幅度值为观测变量判定参数拟合效果,提取该频率成分的幅值和相位。实验表明此方法与相关滤波法相比具有更高的频率分辨率,对抑制近频干扰的能力更出色,较好地解决了提高动不平衡信号提取精度与提高动平衡试验效率难于两全的问题。展开更多
MUSIC(MUltiple SIgnal Classification)等谱峰搜索类算法的计算量主要集中于谱峰搜索过程,加大搜索步长虽可减小计算量,但会引起空间谱的畸变从而造成测向误差。先采用大步长搜索确定谱峰大约位置后再用小步长搜索可以减小测向误差,且...MUSIC(MUltiple SIgnal Classification)等谱峰搜索类算法的计算量主要集中于谱峰搜索过程,加大搜索步长虽可减小计算量,但会引起空间谱的畸变从而造成测向误差。先采用大步长搜索确定谱峰大约位置后再用小步长搜索可以减小测向误差,且增加的计算量较小,但其实时性不佳。文中提出了基于重心估计的入射方向确定方法,利用现有谱峰搜索数据进行后处理,当搜索步长远大于MUSIC测向算法本身的均方根误差(RMSE,Root Mean Square Error)时,可用很小的计算量大大提高测向精度,具有良好的工程应用价值。展开更多
针对经典二维多重信号分类(Multiple Signal Classification,MUSIC)算法在低信噪比和小快拍数情况下,分辨率受阵列孔径限制的问题,提出了一种改进的基于MUSIC算法的二维测向算法.该方法利用MUSIC谱函数极大值点处对方位角和仰角的二阶...针对经典二维多重信号分类(Multiple Signal Classification,MUSIC)算法在低信噪比和小快拍数情况下,分辨率受阵列孔径限制的问题,提出了一种改进的基于MUSIC算法的二维测向算法.该方法利用MUSIC谱函数极大值点处对方位角和仰角的二阶偏导数小于零的特性,通过对方位角和仰角求二阶偏导,构造了新的空间谱函数.对新的空间谱函数进行谱峰搜索,其负向谱峰所对应的角度就是目标的波达方向(Direction Of Arrival,DOA)估计.理论分析和仿真结果表明,在低信噪比、小快拍数下,该方法对相近信源有更高的角度分辨率和更低的均方根误差,并且可适用于任何阵型.展开更多
提出了适用于面阵中的基于级联多重信号分类(multiple signal classification,MUSIC)方法的二维波达方向(direction of arrival,DOA)估计算法。该算法仅采用级联的一维搜索即可实现二维DOA的联合估计,避免了经典二维MUSIC算法的复杂计算...提出了适用于面阵中的基于级联多重信号分类(multiple signal classification,MUSIC)方法的二维波达方向(direction of arrival,DOA)估计算法。该算法仅采用级联的一维搜索即可实现二维DOA的联合估计,避免了经典二维MUSIC算法的复杂计算量,复杂度大大降低,同时角度估计性能非常接近经典二维MUSIC算法。此算法可以实现二维角度的自动配对,角度估计性能优于传播算子算法(propagator method,PM)以及借助于旋转不变技术的信号参数估计算法。同时,该算法可以很好地估计出相同方位角(或仰角)的信源。结合算法的高性能及低复杂度,该算法拥有更广泛的适用范围,其优越性得到验证。展开更多
利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC...利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。展开更多
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
文摘由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。
文摘近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.
文摘在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过求互协方差等运算,得到新的数据协方差矩阵。同时,对该算法和传统的MUSIC算法进行了仿真,对其DOA(Direction-of-Arrival)估计性能进行比较。仿真实验表明,改进后的算法在相干信源的情况下具有很好的去相干性能,而且没有阵列孔径的损失。能精确地估计信号的波达方向。
文摘实值处理具有降低高自由度多输入多输出(multiple-input multiple-output,MIMO)雷达角度估计大计算量的优势。但受制于阵列的共轭对称性,对于任意阵列结构的双基地MIMO雷达发射角(direction of departure,DOD)和接收角(direction of arrival,DOA)联合估计,若不做附加的预处理则无法实现实值操作,故将常规阵列实值处理的多重信号分类(multiple signal classification,MUSIC)超分辨算法推广至任意阵列结构的双基地MIMO雷达。首先根据MIMO雷达的导向矢量共轭与镜像的对等性,提取接收信号协方差矩阵的实部,并对其进行特征分解得到"目标加倍"的信号子空间及其应对的噪声子空间;然后利用Kronecker积的特性对其进行降维处理,得到搜索区域减半的一维半实值域MUSIC谱,取出目标DOD真值与其镜像代入降维Capon算法来剔除虚拟峰值得到目标DOD估计真值;最后利用特征矢量得到模糊DOA估计值,采用方向余弦差最小范数方法得到目标DOA无模糊估计值。本文算法估计性能与一维搜索复数域MUSIC相当,计算量约降50%,且能够实现DOD和DOA的自动配对。仿真结果证明了该算法的有效性。
文摘针对相关滤波等经典频域分析方法提取动不平衡信号时,近频干扰抑制能力及参数估计精度严重依赖数据长度的问题,提出了一种基于残差MUSIC(multiple signal classification)谱分析的正弦参数估计方法,以残差MISIC谱中给定频率点的幅度值为观测变量判定参数拟合效果,提取该频率成分的幅值和相位。实验表明此方法与相关滤波法相比具有更高的频率分辨率,对抑制近频干扰的能力更出色,较好地解决了提高动不平衡信号提取精度与提高动平衡试验效率难于两全的问题。
文摘MUSIC(MUltiple SIgnal Classification)等谱峰搜索类算法的计算量主要集中于谱峰搜索过程,加大搜索步长虽可减小计算量,但会引起空间谱的畸变从而造成测向误差。先采用大步长搜索确定谱峰大约位置后再用小步长搜索可以减小测向误差,且增加的计算量较小,但其实时性不佳。文中提出了基于重心估计的入射方向确定方法,利用现有谱峰搜索数据进行后处理,当搜索步长远大于MUSIC测向算法本身的均方根误差(RMSE,Root Mean Square Error)时,可用很小的计算量大大提高测向精度,具有良好的工程应用价值。
文摘针对经典二维多重信号分类(Multiple Signal Classification,MUSIC)算法在低信噪比和小快拍数情况下,分辨率受阵列孔径限制的问题,提出了一种改进的基于MUSIC算法的二维测向算法.该方法利用MUSIC谱函数极大值点处对方位角和仰角的二阶偏导数小于零的特性,通过对方位角和仰角求二阶偏导,构造了新的空间谱函数.对新的空间谱函数进行谱峰搜索,其负向谱峰所对应的角度就是目标的波达方向(Direction Of Arrival,DOA)估计.理论分析和仿真结果表明,在低信噪比、小快拍数下,该方法对相近信源有更高的角度分辨率和更低的均方根误差,并且可适用于任何阵型.
文摘提出了适用于面阵中的基于级联多重信号分类(multiple signal classification,MUSIC)方法的二维波达方向(direction of arrival,DOA)估计算法。该算法仅采用级联的一维搜索即可实现二维DOA的联合估计,避免了经典二维MUSIC算法的复杂计算量,复杂度大大降低,同时角度估计性能非常接近经典二维MUSIC算法。此算法可以实现二维角度的自动配对,角度估计性能优于传播算子算法(propagator method,PM)以及借助于旋转不变技术的信号参数估计算法。同时,该算法可以很好地估计出相同方位角(或仰角)的信源。结合算法的高性能及低复杂度,该算法拥有更广泛的适用范围,其优越性得到验证。
文摘利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。