The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array...This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在...针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。展开更多
The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple ta...The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.展开更多
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
基金supported by the National Natural Science Foundation of China(6117119761371045+2 种基金61201307)the Shandong Provincial Natural Science Foundation(ZR2011FM005)the Shandong Provincial Promotive Research Fund for Excellent Young and Middle-aged Scientists(BS2010DX001)
文摘This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
文摘针对车载雷达多参数联合超分辨计算复杂度高、无法快速实现参数估计的问题,提出了基于频域波束降维的多参数联合超分辨算法。所提算法通过快速傅里叶变换(fast Fourier transform,FFT)将空时多参数域联合数据变换到频域,处理感兴趣区域的多维频域数据,完成空时波束空间降维和基于频域数据的多参数联合超分辨,实现目标信息的快速联合估计。推导了频域子空间正交性及频域波束降维超分辨算法理论。仿真研究了算法的分辨率和估计性能与信噪比的关系。仿真结果表明,所提算法的精度和分辨率远超传统FFT算法,相对于传统多重信号分类(multiple signal classification,MUSIC)算法,所提算法计算量大幅降低。
文摘针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。
文摘The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.