This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the at...This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.展开更多
In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations...In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces.展开更多
The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official...The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official operation,and optimization and enhancement.This paper explores the problems,policy,and political sources of policy changes since the establishment of the Horgos International Border Cooperation Center by applying the multi-source flow theory to find the opening of the problematic and political windows.It also constructs a model of policy change dynamics to provide suggestions on how the government should better promote the good development of China’s first transnational cooperation center.展开更多
A method based on multiple images captured under different light sources at different incident angles was developed to recognize the coal density range in this study.The innovation is that two new images were construc...A method based on multiple images captured under different light sources at different incident angles was developed to recognize the coal density range in this study.The innovation is that two new images were constructed based on images captured under four single light sources.Reconstruction image 1 was constructed by fusing greyscale versions of the original images into one image,and Reconstruction image2 was constructed based on the differences between the images captured under the different light sources.Subsequently,the four original images and two reconstructed images were input into the convolutional neural network AlexNet to recognize the density range in three cases:-1.5(clean coal) and+1.5 g/cm^(3)(non-clean coal);-1.8(non-gangue) and+1.8 g/cm^(3)(gangue);-1.5(clean coal),1.5-1.8(middlings),and+1.8 g/cm^(3)(gangue).The results show the following:(1) The reconstructed images,especially Reconstruction image 2,can effectively improve the recognition accuracy for the coal density range compared with images captured under single light source.(2) The recognition accuracies for gangue and non-gangue,clean coal and non-clean coal,and clean coal,middlings,and gangue reached88.44%,86.72% and 77.08%,respectively.(3) The recognition accuracy increases as the density moves further away from the boundary density.展开更多
In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-sourc...In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.展开更多
The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified...The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.展开更多
A novel algorithm using multiple spherical arrays based on spherical harmonic analysis is proposed to localize wideband acoustic sources. In the novel spherical harmonic algorithm, the re- ceived microphone signals ar...A novel algorithm using multiple spherical arrays based on spherical harmonic analysis is proposed to localize wideband acoustic sources. In the novel spherical harmonic algorithm, the re- ceived microphone signals are firstly used to do the spherical Fourier transformation. Then, the mul- tiple signal classification (MUSIC) algorithm is applied to the spherical components to obtain the an- gular-spectrum. Finally, the angular-spectrum smoothing technique is proposed to obtain the accu- rate localization of wideband sources. In contrast to the traditional single spherical array, the multi- pie spherical arrays used in this paper consist of several randomly distributed spheres in a given plane. The microphones are uniformly placed on each sphere, the same as the usual single spherical array. Simulation comparison of wideband sources localization between a single spherical array and multiple spherical arrays based on the novel algorithm is carried out to validate our proposed meth- od.展开更多
An analysis and control approach is presented for the active queue management(AQM) problem in network control system supporting multiple links and heterogeneous sources transmission control protocol(TCP).Using additiv...An analysis and control approach is presented for the active queue management(AQM) problem in network control system supporting multiple links and heterogeneous sources transmission control protocol(TCP).Using additive increase multiplicative decrease(AIMD) model,some studies are carried out on multiple links and heterogeneous sources TCP network control system,and some conditions are derived to ensure the stabilization of the given feedback control system by exploiting a general LyapunovKrasovskii functional and some techniques for time-delay systems.And the controller gain is designed further.A simulation is to be provided to verify the algorithm in the paper.展开更多
The thermodynamic features of the Reiner-Rivlin nanoliquid flow induced by a spinning disk are analyzed numerically.The non-homogeneous two-phase nanofluid model is considered to analyze the effect of nanoparticles on...The thermodynamic features of the Reiner-Rivlin nanoliquid flow induced by a spinning disk are analyzed numerically.The non-homogeneous two-phase nanofluid model is considered to analyze the effect of nanoparticles on the thermodynamics of the Reiner-Rivlin nanomaterial,which also includes a temperature-dependent heat source(THS)and an exponential space-dependent heat source(ESHS).Further,the transfer of heat and mass is analyzed with velocity slip,volume fraction jump,and temperature jump boundary conditions.The finite difference method-based routine is used to solve the complicated differential equations formed after using the von-Karman similarity technique.Limiting cases of the present problem are found to be in good agreement with benchmarking studies.The relationship of the pertinent parameters with the heat and mass transport is scrutinized using correlation,which is further evaluated based on the probable error estimates.Multivariable models are fitted for the friction factor at the disk and heat transport,which accurately predict the dependent variables.The Reiner-Rivlin nanoliquid temperature is influenced comparatively more by the ESHS than by THS.The Nusselt number is decreased by the ESHS and THS,whereas the friction factor at the disk is predominantly decremented by the wall roughness aspect.The increment in the non-Newtonian characteristic of the liquid leads more fluid to drain away in the radial direction far from the disk compared with the fluid nearby the disk in the presence of the centrifugal force during rotation.The increased thermal and volume fraction slip lowers the nanoliquid temperature and nanoparticle volume fraction profiles.展开更多
With the development of IT,more andmore document resources are available over the Internet.Inorder to facilitate users’retrieval of the digital documents,Integrations of the multi source systems are necessary,Sinceth...With the development of IT,more andmore document resources are available over the Internet.Inorder to facilitate users’retrieval of the digital documents,Integrations of the multi source systems are necessary,Sincethe individual sources collect their information independently,the same papers may be stored in different source systems.The traditional solutions to the redundancy problems in thedistributed environments are usually based on the globalcatalogs which keep the redundancy information for thesyst...展开更多
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma...Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.展开更多
In this article, we study the existence of infinitely many solutions to the degenerate quasilinear elliptic system -div(h1(x)|△u|p-2△u)=d(x)|u|r-2u+Gu(x,u,v) in Ω -div(h2(x)|△u|q-2△v)=f(x)|v...In this article, we study the existence of infinitely many solutions to the degenerate quasilinear elliptic system -div(h1(x)|△u|p-2△u)=d(x)|u|r-2u+Gu(x,u,v) in Ω -div(h2(x)|△u|q-2△v)=f(x)|v|s-2v+Gv(x,u,v) in Ω, u=v=0 on δΩ where Ω is a bounded domain in RN with smooth boundary δΩ, N ≥ 2, 1 〈 r 〈 p ∞, 1〈 s 〈 q 〈 ∞; h1(x) and h2(x) are allowed to have "essential" zeroes at some points in Ω; d(x)|u|r-2u and f(x)|v|s-2v are small sources with Gu(x,u,v), Gv(x,u,v) being their high-order perturbations with respect to (u, v) near the origin, respectively.展开更多
In this work,we developed a numerical analysis-associated experiment method to determine the effective multiplication factor k_(eff),which is difficult to obtain directly from conventional neutron source multiplicatio...In this work,we developed a numerical analysis-associated experiment method to determine the effective multiplication factor k_(eff),which is difficult to obtain directly from conventional neutron source multiplication(NSM)method.The method is based on the relationship between k_(eff),subcritical multiplication factor k_s and external neutron source efficiency Φ~* in the subcritical system.On basis of the theoretical analysis,the dependence of k_s and Φ~* on subcriticality and source position was investigated at the Chinese Fast Burst Reactor-Ⅱ(CFBR-Ⅱ).A series of k_s were measured by NSM experiments at four subcritical states(k_(eff) = 0.996,0.994,0.991 and0.986) with the ^(252)Cf neutron source located at different positions(from the system center to outside) at each subcritical states.The Φ~* was obtained by Monte-Carlo simulation for each condition.With the measured k_s and calculated Φ~*,k_(eff) of the subcritical system was evaluated with a relative difference of < 1%between values obtained by the improved method and by positive period method.Especially,the relative difference of < 0.18%with the source located at the system center.展开更多
Due to the fact that traditional ray field tracking approaches require a large number of geometrical optical(GO) ray tubes,they are very inefficient in many practical applications.An improved ray model scheme for a ...Due to the fact that traditional ray field tracking approaches require a large number of geometrical optical(GO) ray tubes,they are very inefficient in many practical applications.An improved ray model scheme for a complex source beam(CSB) tracking technique is proposed in this paper.The source field can be expressed by a superposition of CSBs,then every CSB basis function has a Gaussian-type amplitude distribution and is suitable for replacing a GO ray tube in the ray tracing approach.The complex phase matching technique is adopted to find the reflected beam in the reflection point where local approximation is used to represent the curved surface in its neighborhood.A new solution to multiple reflections using the conventional right-handed reflected system is used to track the field easily.Numerical results show the accuracy of the proposed method.展开更多
Rapid and accurate identification of the characteristics(source location,number,and intensity)of pollution sources is essential for emergency assessment of contamination events.Compared with single-point source iden-t...Rapid and accurate identification of the characteristics(source location,number,and intensity)of pollution sources is essential for emergency assessment of contamination events.Compared with single-point source iden-tification,the reconstruction of multiple sources is more challenging.In this study,a two-step inversion method is proposed for multi-point pollution source reconstruction from limited measurements with the number of sources unknown.The applicability of the proposed method is validated with a set of synthetic experiments correspond-ing to one-,two-,and three-point pollution sources.The results show that the number and locations of pollution sources are retrieved exactly the same as prescribed,and the source intensities are estimated with negligible errors.The algorithm exhibits good performance in single-and multi-point pollution source identification,and its accuracy and efficiency of identification do not deteriorate with the increase in the number of sources.Some limitations of the algorithm,together with its capabilities,are also discussed in this paper.展开更多
With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data i...With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data is important in logging while drilling(LWD),large-scale structural exploration,etc.In this paper,we proposed a passive multiple reverse time migration imaging(PMRTMI)method based on wavefield decomposition and normalized imaging conditions method.This method differs from seismic interferometry in that it can use raw passive seismic data directly in RTM imaging without reconstruction of virtual active gather,and we use the wavefield decomposition method to eliminate the low frequency noise in RTM.Further,the energy normalized imaging condition is used in full wavefield decomposition,which can not only enhance the image quality of both edge and deep information but also overcome the wrong energy problem caused by uneven distribution of passive sources;furthermore,this method exhibits high efficiency.Finally,numerical examples with the Marmousi model show the effectiveness of the method.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
It is necessary to reduce hydrogen consumption to meet increasingly strict environmental and product-quality regulations for refinery plants. In this paper, the concentration potential concepts proposed for design of ...It is necessary to reduce hydrogen consumption to meet increasingly strict environmental and product-quality regulations for refinery plants. In this paper, the concentration potential concepts proposed for design of water-using networks are extended to synthesis of hydrogen networks with multiple contaminants. In the design procedure, the precedence of processes is determined by the values of concentration potential of demands.The usage of complementary source pair(s) to reduce utility consumption is investigated. Three case studies are presented to illustrate the effectiveness of the method. It is shown that the design procedure has clear engineering meaning.展开更多
A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple so...A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with nmltiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications.展开更多
基金the National Natural Science Foundation of China(Grant No.42174047 and No.42174036)the National Science Foundation Project for Outstanding Youth(No.42104034).
文摘This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.
基金supported by the National Natural Science Foundation of China (51874281)the Graduate Innovation Program of China University of Mining and Technology (2022WLKXJ006)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX22_2612).
文摘In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces.
文摘The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official operation,and optimization and enhancement.This paper explores the problems,policy,and political sources of policy changes since the establishment of the Horgos International Border Cooperation Center by applying the multi-source flow theory to find the opening of the problematic and political windows.It also constructs a model of policy change dynamics to provide suggestions on how the government should better promote the good development of China’s first transnational cooperation center.
文摘A method based on multiple images captured under different light sources at different incident angles was developed to recognize the coal density range in this study.The innovation is that two new images were constructed based on images captured under four single light sources.Reconstruction image 1 was constructed by fusing greyscale versions of the original images into one image,and Reconstruction image2 was constructed based on the differences between the images captured under the different light sources.Subsequently,the four original images and two reconstructed images were input into the convolutional neural network AlexNet to recognize the density range in three cases:-1.5(clean coal) and+1.5 g/cm^(3)(non-clean coal);-1.8(non-gangue) and+1.8 g/cm^(3)(gangue);-1.5(clean coal),1.5-1.8(middlings),and+1.8 g/cm^(3)(gangue).The results show the following:(1) The reconstructed images,especially Reconstruction image 2,can effectively improve the recognition accuracy for the coal density range compared with images captured under single light source.(2) The recognition accuracies for gangue and non-gangue,clean coal and non-clean coal,and clean coal,middlings,and gangue reached88.44%,86.72% and 77.08%,respectively.(3) The recognition accuracy increases as the density moves further away from the boundary density.
基金This work was supported by the National Natu-ral Science Foundation of China(No.U20B2038,No.61901520,No.61871398 and No.61931011),the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030),and the National Key R&D Program of China under Grant 2018YFB1801103.
文摘In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050247016)the Program forNew Century Excellent Talents in University(NCET-05-0387).
文摘The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.
文摘A novel algorithm using multiple spherical arrays based on spherical harmonic analysis is proposed to localize wideband acoustic sources. In the novel spherical harmonic algorithm, the re- ceived microphone signals are firstly used to do the spherical Fourier transformation. Then, the mul- tiple signal classification (MUSIC) algorithm is applied to the spherical components to obtain the an- gular-spectrum. Finally, the angular-spectrum smoothing technique is proposed to obtain the accu- rate localization of wideband sources. In contrast to the traditional single spherical array, the multi- pie spherical arrays used in this paper consist of several randomly distributed spheres in a given plane. The microphones are uniformly placed on each sphere, the same as the usual single spherical array. Simulation comparison of wideband sources localization between a single spherical array and multiple spherical arrays based on the novel algorithm is carried out to validate our proposed meth- od.
基金Fundamental Research Funds for the Central Universities,China(No.3132014092)
文摘An analysis and control approach is presented for the active queue management(AQM) problem in network control system supporting multiple links and heterogeneous sources transmission control protocol(TCP).Using additive increase multiplicative decrease(AIMD) model,some studies are carried out on multiple links and heterogeneous sources TCP network control system,and some conditions are derived to ensure the stabilization of the given feedback control system by exploiting a general LyapunovKrasovskii functional and some techniques for time-delay systems.And the controller gain is designed further.A simulation is to be provided to verify the algorithm in the paper.
文摘The thermodynamic features of the Reiner-Rivlin nanoliquid flow induced by a spinning disk are analyzed numerically.The non-homogeneous two-phase nanofluid model is considered to analyze the effect of nanoparticles on the thermodynamics of the Reiner-Rivlin nanomaterial,which also includes a temperature-dependent heat source(THS)and an exponential space-dependent heat source(ESHS).Further,the transfer of heat and mass is analyzed with velocity slip,volume fraction jump,and temperature jump boundary conditions.The finite difference method-based routine is used to solve the complicated differential equations formed after using the von-Karman similarity technique.Limiting cases of the present problem are found to be in good agreement with benchmarking studies.The relationship of the pertinent parameters with the heat and mass transport is scrutinized using correlation,which is further evaluated based on the probable error estimates.Multivariable models are fitted for the friction factor at the disk and heat transport,which accurately predict the dependent variables.The Reiner-Rivlin nanoliquid temperature is influenced comparatively more by the ESHS than by THS.The Nusselt number is decreased by the ESHS and THS,whereas the friction factor at the disk is predominantly decremented by the wall roughness aspect.The increment in the non-Newtonian characteristic of the liquid leads more fluid to drain away in the radial direction far from the disk compared with the fluid nearby the disk in the presence of the centrifugal force during rotation.The increased thermal and volume fraction slip lowers the nanoliquid temperature and nanoparticle volume fraction profiles.
文摘With the development of IT,more andmore document resources are available over the Internet.Inorder to facilitate users’retrieval of the digital documents,Integrations of the multi source systems are necessary,Sincethe individual sources collect their information independently,the same papers may be stored in different source systems.The traditional solutions to the redundancy problems in thedistributed environments are usually based on the globalcatalogs which keep the redundancy information for thesyst...
基金Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA28040000,XDA28120000Natural Science Foundation of Shandong Province,Grant No.ZR2021MF094+2 种基金Key R&D Plan of Shandong Province,Grant No.2020CXGC010804Central Leading Local Science and Technology Development Special Fund Project,Grant No.YDZX2021122Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta,Grant No.2022SZX11。
文摘Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.
基金Supported by the National Natural Science Foundation of China(11426122,11371153,and 11361029)the Specialized Research Fund for the Doctoral Program of Higher Education of Chinathe Natural Science Foundation of Jiangxi Province of China(20151BAB211003)
文摘In this article, we study the existence of infinitely many solutions to the degenerate quasilinear elliptic system -div(h1(x)|△u|p-2△u)=d(x)|u|r-2u+Gu(x,u,v) in Ω -div(h2(x)|△u|q-2△v)=f(x)|v|s-2v+Gv(x,u,v) in Ω, u=v=0 on δΩ where Ω is a bounded domain in RN with smooth boundary δΩ, N ≥ 2, 1 〈 r 〈 p ∞, 1〈 s 〈 q 〈 ∞; h1(x) and h2(x) are allowed to have "essential" zeroes at some points in Ω; d(x)|u|r-2u and f(x)|v|s-2v are small sources with Gu(x,u,v), Gv(x,u,v) being their high-order perturbations with respect to (u, v) near the origin, respectively.
基金Supported by Natural Science Foundation of China(No.11175164)
文摘In this work,we developed a numerical analysis-associated experiment method to determine the effective multiplication factor k_(eff),which is difficult to obtain directly from conventional neutron source multiplication(NSM)method.The method is based on the relationship between k_(eff),subcritical multiplication factor k_s and external neutron source efficiency Φ~* in the subcritical system.On basis of the theoretical analysis,the dependence of k_s and Φ~* on subcriticality and source position was investigated at the Chinese Fast Burst Reactor-Ⅱ(CFBR-Ⅱ).A series of k_s were measured by NSM experiments at four subcritical states(k_(eff) = 0.996,0.994,0.991 and0.986) with the ^(252)Cf neutron source located at different positions(from the system center to outside) at each subcritical states.The Φ~* was obtained by Monte-Carlo simulation for each condition.With the measured k_s and calculated Φ~*,k_(eff) of the subcritical system was evaluated with a relative difference of < 1%between values obtained by the improved method and by positive period method.Especially,the relative difference of < 0.18%with the source located at the system center.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61301056 and 61231001)the Fundamental Research Funds for the Central Universities,China(Grant No.ZYGX2014J012)+2 种基金the Fok Ying Tung Education Foundation,China(Grant No.141062)the Aero-Science Fund,China(Grant No.20142580012)the"111"Project(Grant No.B07046)
文摘Due to the fact that traditional ray field tracking approaches require a large number of geometrical optical(GO) ray tubes,they are very inefficient in many practical applications.An improved ray model scheme for a complex source beam(CSB) tracking technique is proposed in this paper.The source field can be expressed by a superposition of CSBs,then every CSB basis function has a Gaussian-type amplitude distribution and is suitable for replacing a GO ray tube in the ray tracing approach.The complex phase matching technique is adopted to find the reflected beam in the reflection point where local approximation is used to represent the curved surface in its neighborhood.A new solution to multiple reflections using the conventional right-handed reflected system is used to track the field easily.Numerical results show the accuracy of the proposed method.
基金supported by the National Key R&D Program of China[Grant Nos.2017YFC1501803 and 2017YFC1502102].
文摘Rapid and accurate identification of the characteristics(source location,number,and intensity)of pollution sources is essential for emergency assessment of contamination events.Compared with single-point source iden-tification,the reconstruction of multiple sources is more challenging.In this study,a two-step inversion method is proposed for multi-point pollution source reconstruction from limited measurements with the number of sources unknown.The applicability of the proposed method is validated with a set of synthetic experiments correspond-ing to one-,two-,and three-point pollution sources.The results show that the number and locations of pollution sources are retrieved exactly the same as prescribed,and the source intensities are estimated with negligible errors.The algorithm exhibits good performance in single-and multi-point pollution source identification,and its accuracy and efficiency of identification do not deteriorate with the increase in the number of sources.Some limitations of the algorithm,together with its capabilities,are also discussed in this paper.
基金sponsored by the Natural Science Foundation of China(No.41874139)the Natural Science Foundation of China(No.41674124)Jilin Province Foundation for Excellent Youths(No.20190103139JH)
文摘With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data is important in logging while drilling(LWD),large-scale structural exploration,etc.In this paper,we proposed a passive multiple reverse time migration imaging(PMRTMI)method based on wavefield decomposition and normalized imaging conditions method.This method differs from seismic interferometry in that it can use raw passive seismic data directly in RTM imaging without reconstruction of virtual active gather,and we use the wavefield decomposition method to eliminate the low frequency noise in RTM.Further,the energy normalized imaging condition is used in full wavefield decomposition,which can not only enhance the image quality of both edge and deep information but also overcome the wrong energy problem caused by uneven distribution of passive sources;furthermore,this method exhibits high efficiency.Finally,numerical examples with the Marmousi model show the effectiveness of the method.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金Supported by the National Natural Science Foundation of China(21176057)the National Basic Research Program of China(2012CB720305)the State Key Laboratory of Chemical Engineering(Open Research Project Skloche-K-2011-04)
文摘It is necessary to reduce hydrogen consumption to meet increasingly strict environmental and product-quality regulations for refinery plants. In this paper, the concentration potential concepts proposed for design of water-using networks are extended to synthesis of hydrogen networks with multiple contaminants. In the design procedure, the precedence of processes is determined by the values of concentration potential of demands.The usage of complementary source pair(s) to reduce utility consumption is investigated. Three case studies are presented to illustrate the effectiveness of the method. It is shown that the design procedure has clear engineering meaning.
基金supported by National Natural Science Foundation of China (Nos. 10675121, 10705028 and 10605025)National Basic Research Program of China (No. 2008CB717800)
文摘A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with nmltiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications.