期刊文献+
共找到1,011篇文章
< 1 2 51 >
每页显示 20 50 100
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:11
1
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
下载PDF
Correlation Analysis of Fiscal Revenue and Housing Sales Price Based on Multiple Linear Regression Model
2
作者 Wei Zheng Xinyi Li +1 位作者 Nanxing Guan Kun Zhang 《数学计算(中英文版)》 2020年第1期3-12,共10页
This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis a... This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points. 展开更多
关键词 Financial Revenue Housing Sales Price Correlation Analysis multiple linear regression model
下载PDF
A study of the mixed layer of the South China Sea based on the multiple linear regression 被引量:6
3
作者 DUAN Rui YANG Kunde +1 位作者 MA Yuanliang HU Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期19-31,共13页
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ... Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid. 展开更多
关键词 mixed layer multiple linear regression South China Sea vertical mixing model
下载PDF
The Calculation of Parameters for DNA Kinetic Structure Based on Monte-Carlo Multiple Integrals 被引量:1
4
作者 崔向军 蔡禄 《Agricultural Science & Technology》 CAS 2010年第5期5-6,16,共3页
Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA ... Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results. 展开更多
关键词 Monte-Carlo method multiple integrals DNA Time complexity Precision
下载PDF
Application of Multiple Linear Regression and Manova to Evaluate Health Impacts Due to Changing River Water Quality 被引量:2
5
作者 Sudevi Basu K. S. Lokesh 《Applied Mathematics》 2014年第5期799-807,共9页
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa... Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts. 展开更多
关键词 multiple linear regression model MANOVA t-Statistics BOD COD TDS TC FC
下载PDF
Multiple Regression and Big Data Analysis for Predictive Emission Monitoring Systems
6
作者 Zinovi Krougly Vladimir Krougly Serge Bays 《Applied Mathematics》 2023年第5期386-410,共25页
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple... Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant. 展开更多
关键词 Matrix Algebra in multiple linear regression Numerical Integration High Precision Computation Applications in Predictive Emission Monitoring Systems
下载PDF
A Universal Selection Method in Linear Regression Models
7
作者 Eckhard Liebscher 《Open Journal of Statistics》 2012年第2期153-162,共10页
In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subj... In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using the proposed selection rule, the mis-selection error can be controlled uniformly. 展开更多
关键词 linear regression model SELECTION multiple TESTS
下载PDF
Gamma generalized linear model to investigate the effects of climate variables on the area burned by forest fire in northeast China 被引量:2
8
作者 Futao Guo Guangyu Wang +3 位作者 John L. Innes Xiangqing Ma Long Sun Haiqing Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期545-555,共11页
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r... The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire. 展开更多
关键词 Lightning-caused fire Human-caused fire multiple linear regression Log-linear model Daxing'anmountains
下载PDF
Suggestion of advanced regression model on friction angle of fault gouge in South Korea 被引量:2
9
作者 Seong-Woo Moon Hyun-Seok Yun Yong-Seok Seo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1368-1379,共12页
Although friction characteristics of fault gouge are important to understand reactivation of fault,behavior of earthquake,and mechanism of slope failure,analysis results of fault gouge have low accuracy mostly than th... Although friction characteristics of fault gouge are important to understand reactivation of fault,behavior of earthquake,and mechanism of slope failure,analysis results of fault gouge have low accuracy mostly than those of soils or rocks due to its high heterogeneity and low strength.Therefore,to improve the accuracy of analysis results,we conducted simple regression analysis and structural equation model analysis and selected major influential factors of friction characteristics among many factors,and then we deduced advanced regression model with the highest coefficient of determination(R^(2)) via multiple regression analysis.Whereas most coefficients of determination in simple regression analysis are below0.3-0.4,coefficient of determination in multiple regression analysis is remarkably large as 0.657. 展开更多
关键词 Fault gouge Friction angle Simple regression analysis Structural equation model analysis multiple regression analysis
下载PDF
Predicting the Acute Toxicity of Aromatic Amines by Linear and Nonlinear Regression Methods 被引量:4
10
作者 张晓龙 周志祥 +3 位作者 刘阳华 范雪兰 李捍东 王建涛 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第2期244-252,共9页
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ... In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness. 展开更多
关键词 aromatic amines acute toxicity quantitative structure-activity relationship(QSAR) support vector machine (SVM) multiple linear regression (MLR)
下载PDF
Quantitative Models for the Structure and Photodegradation of Polycyclic Aromatic Hydrocarbons 被引量:2
11
作者 周作明 李小林 荆国华 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第2期205-212,共8页
Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydro... Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydrocarbons(PAHs) by use of linear method(multiple linear regression,MLR) and non-linear method(back propagation artificial neural network,BP-ANN).A BP-ANN with 3-3-1 architecture was generated by using three quantum chemical descriptors appearing in the MLR model.The standard heat of formation(HOF),the gap of frontier molecular orbital energies(ΔELH) and total energy(TE) were inputs and its output was logK.Leave-One-Out(LOO) Cross-Validated correlation coefficient(R^2CV) of the established MLR and BP-ANN models were 0.6383 and 0.7843,respectively.The nonlinear BP-ANN model has better predictive ability compared to the linear MLR model with the root mean square error(RMSE) for training and validation sets to be 0.1071,0.1514 and the squared correlation coefficient(R^2) of 0.9791,0.9897,respectively.In addition,some insights into the molecular structural features affecting the photodegradation of PAHs were also discussed. 展开更多
关键词 quantitative structure-property relationship(QSPR) photodegradation rate constant(logK) polycyclic aromatic hydrocarbons multiple linear regression backpropagation artificial neural network
下载PDF
Quantitative Structure-activity Relationship Models of Monomer Reactivity
12
作者 YU Xin-Liang YI Xiang YANG Hui-Qiong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第11期1867-1873,共7页
The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative str... The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative structure-activity relationship(QSAR)model for the reactivity parameter lnQ was developed based on five descriptors(NAF,NOF,EαLUMO,EβHOMO,and EβLUMO)and 69 monomers with the root mean square(rms)error of 0.61.The optimal MLR model of the parameter e obtained from five descriptors(TOcl,NpN,NSO,EαHOMO and DH)and 68 monomers produced rms error of 0.42.Compared with previous models,the two optimal MLR models in this paper show satisfactory statistical characteristics.The feasibility of combining 2D descriptors obtained from the monomers and 3D descriptors calculated from the radical structures(formed from monomers+H )to predict parameters Q and e has been demonstrated. 展开更多
关键词 density FUNCTIONAL theory MOLECULAR DESCRIPTORS multiple linear regression QUANTUM chemical DESCRIPTORS QUANTITATIVE structure-ACTIVITY relationship
下载PDF
芙蓉李果实成熟期间的综合品质评价指标筛选与表观预测模型构建
13
作者 周丹蓉 林炎娟 +1 位作者 方智振 叶新福 《食品安全质量检测学报》 CAS 2024年第12期210-219,共10页
目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3... 目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷、多酚、黄酮、类胡萝卜素等13个品质指标进行分析和综合评价。结果芙蓉李成熟期间,各品质指标的含量变化存在显著差异(P<0.05),综合运用相关分析、因子分析、绝对因子分析-多元线性回归(absolute principal component scores-multiple linear regression,APCS-MLR)分析筛选可反映芙蓉李综合品质的主要指标。因子分析提取出3个主因子,贡献率分别为52.677%、23.468%、11.649%,累计贡献率为87.794%。综合APCS-MLR等数理统计分析,主因子1主要对果糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷贡献较大,贡献率分别为53.00%、73.85%、55.54%;主因子2主要对蔗糖、富马酸、果糖、柠檬酸的贡献率较大,分别为28.26%、18.70%、16.14%、15.59%;主因子3主要对多酚(29.13%)和黄酮(28.28%)有较大贡献率;选取3个主因子总贡献率高于60%的果糖、葡萄糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷作为综合品质评价的主要指标。分别对已筛选出的4个主要评价指标与色度值进行多元线性逐步回归分析,建立4个主要指标与色度值的表观预测模型,各模型均具有较好的拟合度,预测值与实测值的均方根误差较小;进一步验证结果表明,通过色度值对4个指标的预测具有较高的可靠性和准确性。结论本研究筛选出的主要指标及预测模型可更加简单、便捷地评价芙蓉李果实成熟期间的综合品质。 展开更多
关键词 芙蓉李 成熟 品质指标 绝对因子分析-多元线性回归分析 表观预测模型
下载PDF
感性工学视域下外卖配送电动车造型设计
14
作者 李靖 郜红合 《包装工程》 CAS 北大核心 2024年第6期143-149,共7页
目的提出符合用户感性需求特征的外卖配送电动车造型设计方案。方法基于感性工学理论,将感性需求转化成定性分析与定量分析,采用SDM(语意差异法)方法制作调查问卷,收集并筛选描述外卖配送电动车造型的感性意象词汇与样本图片,并结合主... 目的提出符合用户感性需求特征的外卖配送电动车造型设计方案。方法基于感性工学理论,将感性需求转化成定性分析与定量分析,采用SDM(语意差异法)方法制作调查问卷,收集并筛选描述外卖配送电动车造型的感性意象词汇与样本图片,并结合主成分分析法,提取影响造型设计的主要因子和外卖电动车造型元素,构建感性意象数学模型;通过多元线性回归法,借助SPSS统计软件对四个主要造型构成要素与感性意象进行量化处理。结果对外卖配送电动车的前面板、前大灯、车身架和座垫的造型元素展开分析,设计出与用户“时尚”和“速度”情感需求最匹配的梯形前面板、变异多边形前大灯、多边形车身架和细长型座垫造型元素。结论感性工学不仅能有效挖掘用户需求,而且还能直观表达出感性感受与数值的对应关系,对外卖配送电动车造型要素进行有目的的设计和调整。 展开更多
关键词 产品设计 外卖配送电动车 感性工学 多元线性回归 造型设计
下载PDF
基于GPRS无线通讯技术的自动化灌溉系统设计
15
作者 赵转莉 高玲 《农机化研究》 北大核心 2024年第12期184-188,共5页
针对传统的大水漫灌等灌溉方式灌水不均、容易造成农作物病害或涝死、浪费水资源和人工成本较高的问题,基于GPRS无线通讯技术对自动化灌溉系统进行了设计。为了获取有效的灌溉数据,同时能够对数据进行统计、分析和预测,设计了自动灌溉... 针对传统的大水漫灌等灌溉方式灌水不均、容易造成农作物病害或涝死、浪费水资源和人工成本较高的问题,基于GPRS无线通讯技术对自动化灌溉系统进行了设计。为了获取有效的灌溉数据,同时能够对数据进行统计、分析和预测,设计了自动灌溉数据信息的预处理方法,并采用多元线性回归预测模型对灌溉数据进行预测。为了验证该自动化灌溉系统的性能,对其进行了数据采集试验和灌溉预测试验,结果表明:系统对灌溉数据监测和预测的准确率均较高。 展开更多
关键词 自动化灌溉系统 RPRS无线通讯技术 预处理 多元线性回归预测模型
下载PDF
基于LSTM的多因素石灰窑煅烧带温度预测研究
16
作者 温后珍 栾仪广 +2 位作者 孟碧霞 卞庆舟 陆建明 《化工自动化及仪表》 CAS 2024年第5期864-871,906,共9页
针对石灰窑煅烧过程易出现燃烧不平衡的问题以及石灰窑煅烧系统的滞后性,提出了大数据分析+神经网络的解决方案。利用大数据分析对石灰窑多源历史数据进行数据融合插补,采用多元线性回归方程分析空间因素对温度的影响,通过时间滑窗提取... 针对石灰窑煅烧过程易出现燃烧不平衡的问题以及石灰窑煅烧系统的滞后性,提出了大数据分析+神经网络的解决方案。利用大数据分析对石灰窑多源历史数据进行数据融合插补,采用多元线性回归方程分析空间因素对温度的影响,通过时间滑窗提取特征,在此基础上利用长短期记忆神经网络(LSTM)算法构建多因素模型,并采用自适应运动估计算法进行优化。实验结果表明:较单因素LSTM模型,多因素LSTM模型有效提高了石灰窑温度预测精度,现场可根据预测值提前调整工艺参数,实现了石灰窑局部温度预测。 展开更多
关键词 温度预测 长短期记忆神经网络 石灰窑 多元线性回归 多因素 自适应运动估计算法
下载PDF
微胶囊相变材料改良粉砂土的导热系数及预测模型
17
作者 唐少容 殷磊 +1 位作者 杨强 柯德秀 《中国粉体技术》 CAS CSCD 2024年第3期112-123,共12页
【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对... 【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对mPCM改良粉砂土进行导热系数实验和内部结构表征;采用多元线性回归和支持向量机(support vector machine,SVM)方法分别建立mPCM改良粉砂土的导热系数预测模型。【结果】mPCM改良粉砂土导热系数与含水率、干密度、mPCM掺量有关,且受冰水相对含量、冰水相变潜热、mPCM相变潜热和mPCM填充密实作用的影响,具有明显的温度效应;mPCM改良粉砂土导热系数的变化与实验温度和mPCM相变温度有关,可分为快速降低、缓慢降低和逐步上升3个阶段;多元线性回归和SVM模型均能较好地拟合预测mPCM改良粉砂土的导热系数,但SVM模型更适用于表征mPCM改良粉砂土导热系数各影响因素间的非线性关系。【结论】mPCM改良粉砂土的导热系数提高能够有效调控渠基土温度场,减轻渠道冻害,且SVM模型能更加准确地进行导热系数预测。 展开更多
关键词 微胶囊相变材料 粉砂土 导热系数 预测模型 多元线性回归 支持向量机
下载PDF
渤海海域井壁取心裂解烃S_(2)烃类损失恢复回归分析
18
作者 李阳 郭明宇 +3 位作者 倪鹏勃 李鸿儒 符强 黄子舰 《录井工程》 2024年第2期49-56,共8页
地化录井受工程、地质条件及人为因素的影响,往往造成岩石样品从井底到地表的烃类损失,不能很好地反映地下储层的真实含油气信息,因此需要一种合理准确的方法进行烃类损失恢复。针对渤海海域不同地区不同层位的岩屑值(自变量)与壁心值(... 地化录井受工程、地质条件及人为因素的影响,往往造成岩石样品从井底到地表的烃类损失,不能很好地反映地下储层的真实含油气信息,因此需要一种合理准确的方法进行烃类损失恢复。针对渤海海域不同地区不同层位的岩屑值(自变量)与壁心值(因变量)之间的关系,基于最小二乘法、梯度下降法及其衍生算法,以多元线性回归和非线性回归两种方式来拟合研究区井壁取心数据。多元线性回归模型可使用标准方程法、岭回归、LASSO(Least Absolute Shrinkage and Selection Operator)及弹性网进行回归拟合,非线性回归模型可使用梯度下降法和分段函数的拟合方法。对不同回归分析方法进行分析对比可知,岭回归在计算线性关系的烃类损失方面具有较好的效果,决定系数r^(2)均超过0.7;基于岭回归分段函数拟合和非线性回归模型y=x/(b+kx)适合非线性烃类损失恢复。与传统的烃类损失恢复方法相比,使用量化的方式对研究区烃类进行恢复,更加科学全面,具有广泛的应用前景。 展开更多
关键词 烃类损失恢复 裂解烃 回归分析 多元线性回归模型 非线性回归模型 井壁取心
下载PDF
基于灰色回归模型广州市果蔬类生鲜农产品冷链物流需求预测 被引量:2
19
作者 刘子玲 谢如鹤 +2 位作者 廖晶 何佳雯 罗湖桥 《包装工程》 CAS 北大核心 2024年第3期243-250,共8页
目的通过对不同预测方法的误差进行对比研究,选取预测精度较高的方法,促进部门科学化决策。方法从农产品供给、社会经济水平、冷链物流保障、居民规模与消费能力四大维度选取15个指标来构建影响因素指标体系,对影响因素与冷链物流需求... 目的通过对不同预测方法的误差进行对比研究,选取预测精度较高的方法,促进部门科学化决策。方法从农产品供给、社会经济水平、冷链物流保障、居民规模与消费能力四大维度选取15个指标来构建影响因素指标体系,对影响因素与冷链物流需求进行灰色关联度分析。采用GM(1,1)、GM(1,6)与主成分-多元回归线性模型对果蔬类生鲜农产品冷链物流需求进行预测。结果GM(1,1)预测模型、GM(1,6)预测模型、主成分-多元回归线性预测模型的预测误差分别为2.97%、1.70%、2.53%。结论GM(1,6)预测模型预测精度最高,该模型适用于中短期的冷链物流需求预测,具有较高的应用价值。 展开更多
关键词 果蔬类生鲜农产品 灰色预测模型 主成分-多元回归线性 需求预测
下载PDF
基于GPCC月尺度降水产品的空间降尺度适用性研究
20
作者 岳凡 李鹏 +3 位作者 夏朝辉 吴亨 曹永翔 王添 《水利与建筑工程学报》 2024年第4期190-199,222,共11页
卫星降水产品在弥补地面观测站空间覆盖不足方面起着关键作用,但其较低的空间分辨率和有限的精度限制了在水文学和气候学研究中的直接运用。通过评估全球降水气候中心(GPCC)不同分辨率降水产品,并应用空间降尺度技术提升数据质量,以提... 卫星降水产品在弥补地面观测站空间覆盖不足方面起着关键作用,但其较低的空间分辨率和有限的精度限制了在水文学和气候学研究中的直接运用。通过评估全球降水气候中心(GPCC)不同分辨率降水产品,并应用空间降尺度技术提升数据质量,以提升数据应用价值。选取0.25°分辨率GPCC数据,融合多源地理信息,构建多元线性回归模型实施降尺度,成功将其分辨率提高至1 km×1 km,模型依托内蒙古自治区实测降水数据进行验证。结果表明,所有模型的决定系数值均维持在0.881以上,均方根误差低于37.348 mm,偏差不超过0.041 mm,证明降尺度后数据精确可靠,具备良好地域适应性。研究成果可为深入研究内蒙古自治区水循环过程、指导农牧业生产实践、精准监测干旱状况等提供高分辨率、高质量的卫星降水数据支持。 展开更多
关键词 全球降水气候中心(GPCC) 降水 多元线性回归模型 空间降尺度
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部