期刊文献+
共找到371篇文章
< 1 2 19 >
每页显示 20 50 100
Endpoint Prediction of EAF Based on Multiple Support Vector Machines 被引量:12
1
作者 YUAN Ping MAO Zhi-zhong WANG Fu-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期20-24,29,共6页
The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on ... The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF. 展开更多
关键词 endpoint prediction EAF soft sensor model multiple support vector machine (msvm principal components regression (PCR)
下载PDF
A Multiple Model Approach to Modeling Based on Fuzzy Support Vector Machines 被引量:2
2
作者 冯瑞 张艳珠 +1 位作者 宋春林 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第2期137-141,共5页
A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SV... A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs. 展开更多
关键词 fuzzy support vector machines(FSVMs) fuzzy support vector classifier(FSVC) fuzzy support vector regression(FSVR) multiple model MODELING
下载PDF
Hypersphere support vector machines based on generalized multiplicative updates
3
作者 吴青 刘三阳 张乐友 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期126-130,共5页
This paper proposes a novel hypersphere support vector machines (HSVMs) based on generalized multiplicative updates. This algorithm can obtain the boundary of hypersphere containing one class of samples by the descr... This paper proposes a novel hypersphere support vector machines (HSVMs) based on generalized multiplicative updates. This algorithm can obtain the boundary of hypersphere containing one class of samples by the description of the training samples from one class and use this boundary to classify the test samples. The generalized multiplicative updates are applied to solving boundary optimization progranmning. Multiplicative updates available are suited for nonnegative quadratic convex programming. The generalized multiplicative updates are derived to box and sum constrained quadratic programming in this paper. They provide an extremely straightforward way to implement support vector machines (SVMs) where all variables are updated in parallel. The generalized multiplicative updates converge monotonically to the solution of the maximum margin hyperplane. The experiments show the superiority of our new algorithm. 展开更多
关键词 hypersphere support vector machines (HSVMs) multiplicative updates sum and box constrained quadraticprogramming classification.
下载PDF
A stacked multiple kernel support vector machine for blast inducedflyrock prediction
4
作者 Ruixuan Zhang Yuefeng Li +2 位作者 Yilin Gui Danial Jahed Armaghani Mojtaba Yari 《Geohazard Mechanics》 2024年第1期37-48,共12页
As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarded... As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarded as one ofthe most important issues induced by blasting operations, since the accurate prediction of which is crucial fordelineating safety zone. For this purpose, this study developed a flyrock prediction model based on 234 sets ofblasting data collected from Sugun Copper Mine site. A stacked multiple kernel support vector machine (stackedMK-SVM) model was proposed for flyrock prediction. The proposed stacked structure can effectively improve themodel performance by addressing the importance level of different features. For comparison purpose, 6 othermachine learning models were developed, including SVM, MK-SVM, Lagragian Twin SVM (LTSVM), ArtificialNeural Network (ANN), Random Forest (RF) and M5 Tree. This study implemented a 5-fold cross validationprocess for hyperparameters tuning purpose. According to the evaluation results, the proposed stacked MK-SVMmodel achieved the best overall performance, with RMSE of 1.73 and 1.74, MAE of 0.58 and 1.08, VAF of 98.95and 99.25 in training and testing phase, respectively. 展开更多
关键词 multiple kernel learning support vector machine Stacked model Flyrock prediction
原文传递
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
5
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
下载PDF
Combination Method of Principal Component Analysis and Support Vector Machine for On-line Process Monitoring and Fault Diagnosis 被引量:2
6
作者 赵旭 文香军 邵惠鹤 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期53-58,共6页
On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process m... On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate. 展开更多
关键词 principal component analysis multiple support vector machine process monitoring fault detection fault diagnosis.
下载PDF
Multi-Dimension Support Vector Machine Based Crowd Detection and Localisation Framework for Varying Video Sequences
7
作者 Manoharan Mahalakshmi Radhakrishnan Kanthavel Divakaran Thilagavathy Dinesh 《Circuits and Systems》 2016年第11期3565-3588,共24页
In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance mo... In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance model. In multi-dimension SVM crowd detection, many features are available to track the object robustly with three main features which include 1) identification of an object by gray scale value, 2) histogram of oriented gradients (HOG) and 3) local binary pattern (LBP). We propose two more powerful features namely gray level co-occurrence matrix (GLCM) and Gaber feature for more accurate and authenticate tracking result. To combine and process the corresponding SVMs obtained from each features, a new collaborative strategy is developed on the basis of the confidence distribution of the video samples which are weighted by entropy method. We have adopted subspace evolution strategy for reconstructing the image of the object by constructing an update model. Also, we determine reconstruction error from the samples and again automatically build an update model for the target which is tracked in the video sequences. Considering the movement of the targeted object, occlusion problem is considered and overcome by constructing a collaborative model from that of appearance model and update model. Also if update model is of discriminative model type, binary classification problem is taken into account and overcome by collaborative model. We run the multi-view SVM tracking method in real time with subspace evolution strategy to track and detect the moving objects in the crowded scene accurately. As shown in the result part, our method also overcomes the occlusion problem that occurs frequently while objects under rotation and illumination change due to different environmental conditions. 展开更多
关键词 multiple support vector machine Crowd Detection Motion Blur Collaborative Model Gaber Feature
下载PDF
基于SPSO优化Multiple Kernel-TWSVM的滚动轴承故障诊断 被引量:7
8
作者 徐冠基 曾柯 柏林 《振动.测试与诊断》 EI CSCD 北大核心 2019年第5期973-979,1130,共8页
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式... 双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 相空间重构 简化粒子群优化 双核双子支持向量机
下载PDF
Novel feature fusion method for speech emotion recognition based on multiple kernel learning
9
作者 金赟 宋鹏 +1 位作者 郑文明 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期129-133,共5页
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl... In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 speech emotion recognition multiple kemellearning feature fusion support vector machine
下载PDF
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
10
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
下载PDF
Elastic Multiple Kernel Learning 被引量:6
11
作者 WU Zheng-Peng ZHANG Xue-Gong 《自动化学报》 EI CSCD 北大核心 2011年第6期693-699,共7页
(MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以... (MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以忽略有用信息。在这份报纸,我们建议学习的有弹性的多重核(EMKL ) 完成适应的核熔化。EMKL 使用混合规则化功能损害稀少和非稀少。MKL 和 SVM 能被认为是 EMKL 的特殊情况。为 MKL 问题基于坡度降下算法,我们建议一个快算法解决 EMKL 问题。模拟数据集上的结果证明 EMKL 的表演有利地比作 MKL 和 SVM。我们进一步把 EMKL 用于基因集合分析并且得到有希望的结果。最后,我们学习比作另外的非稀少的 MKL 的 EMKL 的理论优点。 展开更多
关键词 《自动化学报》 期刊 摘要 编辑部
下载PDF
Improve the Prediction Accuracy of Apple Tree Canopy Nitrogen Content through Multiple Scattering Correction Using Spectroscopy 被引量:3
12
作者 Lulu Gao Xicun Zhu +4 位作者 Cheng Li Lizhen Cheng Ling Wang Gengxing Zhao Yuanmao Jiang 《Agricultural Sciences》 2016年第10期651-659,共9页
Method: Use Multiple Scattering Correction to eliminate the interference of scattering on spectrum in the process of field measurement so as to improve the accuracy of prediction model of tree canopy nitrogen content.... Method: Use Multiple Scattering Correction to eliminate the interference of scattering on spectrum in the process of field measurement so as to improve the accuracy of prediction model of tree canopy nitrogen content. Apple trees in Qixia of Yantai City were taken as the test material. The spectral reflectivity of apple tree canopy went through the First Derivative (FD) and Multiple Scattering Correction (MSC) plus first derivative, respectively. The correlation coefficients were calculated between spectral reflectivity and nitrogen content. The Support Vector Machine (SVM) method was used to establish the prediction model. The result indicates that the MSC pre-processing can improve the correlation between spectral reflectivity and nitrogen content. The SVM model with MSC + FD pre-processing was a good way to predict the nitrogen content. The calibration R<sup>2</sup> of the model was 0.746;the validation R2 was 0.720;and its RMSE was 0.452 g·kgˉ<sup>1</sup>. MSC can commendably eliminate scattering error to improve the prediction accuracy of prediction model. 展开更多
关键词 multiple Scattering Correction Hyperspectrum Apple Tree Canopy Nitrogen Content support vector machine
下载PDF
Automatic Product Image Classification with Multiple Support Vector Machine Classifiers
13
作者 贾世杰 孔祥维 满红 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第4期391-394,共4页
For the task of visual-based automatic product image classification for e-commerce,this paper constructs a set of support vector machine(SVM) classifiers with different model representations.Each base SVM classifier i... For the task of visual-based automatic product image classification for e-commerce,this paper constructs a set of support vector machine(SVM) classifiers with different model representations.Each base SVM classifier is trained with either different types of features or different spatial levels.The probability outputs of these SVM classifiers are concatenated into feature vectors for training another SVM classifier with a Gaussian radial basis function(RBF) kernel.This scheme achieves state-of-the-art average accuracy of 86.9%for product image classification on the public product dataset PI 100. 展开更多
关键词 product image classification support vector machine(SVM) multiple SVM classifier
原文传递
弱监督场景下的支持向量机算法综述 被引量:2
14
作者 丁世飞 孙玉婷 +3 位作者 梁志贞 郭丽丽 张健 徐晓 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期987-1009,共23页
支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量... 支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量的、唯一且明确的真值标记样本来训练学习器,在不完全监督、不确切监督以及多义监督等弱监督场景下难以取得较好的效果.本文首先阐述了弱监督场景的概念和SVM的相关理论,然后从弱监督场景角度出发,系统地梳理了目前SVM算法的研究现状和发展,包括基于半监督学习、多示例学习以及多标记学习的方法;其中基于半监督学习的方法根据数据假设可细分为基于聚类假设和基于流形假设的方法,基于多标记学习的方法根据解决方案可细分为基于示例水平空间、基于包水平空间以及基于嵌入空间的方法,基于多标记学习的方法根据处理思路可细分为基于问题转换和基于算法自适应的方法;随后,本文总结了部分代表性算法在公开数据集上的实验结果;最后,探讨并展望了未来可能的研究方向. 展开更多
关键词 弱监督场景 支持向量机 半监督学习 多示例学习 多标记学习
下载PDF
微胶囊相变材料改良粉砂土的导热系数及预测模型
15
作者 唐少容 殷磊 +1 位作者 杨强 柯德秀 《中国粉体技术》 CAS CSCD 2024年第3期112-123,共12页
【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对... 【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对mPCM改良粉砂土进行导热系数实验和内部结构表征;采用多元线性回归和支持向量机(support vector machine,SVM)方法分别建立mPCM改良粉砂土的导热系数预测模型。【结果】mPCM改良粉砂土导热系数与含水率、干密度、mPCM掺量有关,且受冰水相对含量、冰水相变潜热、mPCM相变潜热和mPCM填充密实作用的影响,具有明显的温度效应;mPCM改良粉砂土导热系数的变化与实验温度和mPCM相变温度有关,可分为快速降低、缓慢降低和逐步上升3个阶段;多元线性回归和SVM模型均能较好地拟合预测mPCM改良粉砂土的导热系数,但SVM模型更适用于表征mPCM改良粉砂土导热系数各影响因素间的非线性关系。【结论】mPCM改良粉砂土的导热系数提高能够有效调控渠基土温度场,减轻渠道冻害,且SVM模型能更加准确地进行导热系数预测。 展开更多
关键词 微胶囊相变材料 粉砂土 导热系数 预测模型 多元线性回归 支持向量机
下载PDF
基于GARCH模型MSVM的轴承故障诊断方法 被引量:8
16
作者 陶新民 徐晶 +1 位作者 杨立标 刘玉 《振动与冲击》 EI CSCD 北大核心 2010年第5期11-15,236-237,共5页
针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,... 针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,以MSVM作为故障诊断方法。试验结果验证了GARCH模型方法的可行性和有效性,同时将该方法同基于AR模型的方法及其改进方法进行比较,结果表明该方法在诊断率及诊断时间上都有明显提高。 展开更多
关键词 故障诊断GARCH模型 多类支持向量机
下载PDF
基于局部切空间排列与MSVM的齿轮箱故障诊断 被引量:15
17
作者 陈法法 汤宝平 苏祖强 《振动与冲击》 EI CSCD 北大核心 2013年第5期38-42,47,共6页
针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到... 针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到初始低维流形结构,获取最优敏感特征向量;将该特征向量输入至多核支持向量机进行学习训练与故障辨识。局部切空间排列能克服传统降维方法的不足,多核支持向量机可实现复杂故障高精度、自动化智能诊断。通过齿轮箱故障模拟实验验证该方法的有效性。 展开更多
关键词 局部切空间排列 多核学习 支持向量机 齿轮箱 故障诊断
下载PDF
基于MSVM的多品种小批量动态过程在线质量智能诊断 被引量:12
18
作者 刘玉敏 周昊飞 《中国机械工程》 EI CAS CSCD 北大核心 2015年第17期2356-2363,共8页
提出了基于多分类支持向量机(MSVM)的多品种、小批量动态过程在线质量智能诊断方法。离线训练时,提取异常模式仿真数据的小波重构特征,对MSVM识别和估计模型进行训练和测试,同时建立异常因素诊断库;在线诊断时,对"监控窗口"... 提出了基于多分类支持向量机(MSVM)的多品种、小批量动态过程在线质量智能诊断方法。离线训练时,提取异常模式仿真数据的小波重构特征,对MSVM识别和估计模型进行训练和测试,同时建立异常因素诊断库;在线诊断时,对"监控窗口"数据特征的过程模式及参数进行识别与估计,而后利用异常因素诊断库实现对多品种、小批量动态过程实时在线智能诊断。某精密轴加工过程实例验证了该智能诊断方法的有效性。 展开更多
关键词 多品种小批量 质量异常模式 小波重构 分类支持向量机(msvm) 在线智能诊断
下载PDF
基于递归定量分析与多核学习支持向量机的玻璃纤维增强复合材料缺陷识别技术
19
作者 郭伟 王召巴 +1 位作者 陈友兴 吴其洲 《测试技术学报》 2024年第1期79-84,共6页
为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中... 为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中不同类型缺陷的能力。结果表明,该模型能够准确识别GFRP中的分层缺陷与夹杂缺陷,检测识别率达到92.92%,并且与基于离散小波变换(Discrete Wavelet Transform,DWT)和经验模态分解(Empirical Mode Decomposition,EMD)的MKLSVM检测模型的识别率相比,所提出的检测模型的识别率分别提高了7.5%和3.75%。 展开更多
关键词 玻璃纤维增强复合材料 超声检测 递归定量分析 多核学习支持向量机
下载PDF
基于测量阻抗动态轨迹的大型调相机失磁保护
20
作者 陈晓强 康纪良 +2 位作者 刘超 曹明宣 肖仕武 《电力工程技术》 北大核心 2024年第2期218-228,共11页
大型调相机失磁故障严重影响设备本体安全以及电网稳定,现有基于静态阈值的低电压与无功反向判据可靠性与选择性不足。文中提出一种可反映调相机运行状态的机端测量阻抗全局动态轨迹智能识别的失磁保护原理,从运动学角度建立能够准确反... 大型调相机失磁故障严重影响设备本体安全以及电网稳定,现有基于静态阈值的低电压与无功反向判据可靠性与选择性不足。文中提出一种可反映调相机运行状态的机端测量阻抗全局动态轨迹智能识别的失磁保护原理,从运动学角度建立能够准确反映失磁与其他工况下测量阻抗轨迹的特征量时间序列,基于统计学提取解释性强的特征量。利用自适应权重的全局与局部核函数组合训练多核支持向量机(multiple kernel learning support vector machine,MKL-SVM),在保证模型学习能力的同时增强其泛化能力;提出基于分类核空间距离的两阶段识别策略,可在保证可靠性的前提下提高保护速动性。基于PSCAD仿真平台搭建调相机接入电网模型进行验证,结果表明所提失磁保护方案无须采集转子侧电气量,识别准确,面对新能源接入和未知扰动时仍具有优良的适用性。 展开更多
关键词 调相机 失磁保护 测量阻抗轨迹 多核支持向量机(MKL-SVM) 两阶段识别 泛化能力
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部