An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method...An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.展开更多
This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does no...This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does not require any detection.Firstly,more information is reserved and compared with the after-detection measurements using a finite set of detected points.It can significantly improve the tracking performance,especially in low signal-to-noise ratio.Secondly,it inherits the advantages of the multi-Bernoulli approximation which models each of the targets individually.This allows more accurate multi-target state estimation,especially when targets cross.The proposed filter does not need clustering step and simulation results showcase the improved performance of the proposed filter.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
Indoor multi-tracking is more challenging compared with outdoor tasks due to frequent occlusion, view-truncation, severe scale change and pose variation, which may bring considerable unreliability and ambiguity to tar...Indoor multi-tracking is more challenging compared with outdoor tasks due to frequent occlusion, view-truncation, severe scale change and pose variation, which may bring considerable unreliability and ambiguity to target representation and data association. So discriminative and reliable target representation is vital for accurate data association in multi-tracking. Pervious works always combine bunch of features to increase the discriminative power, but this is prone to error accumulation and unnecessary computational cost, which may increase ambiguity on the contrary. Moreover, reliability of a same feature in different scenes may vary a lot, especially for currently widespread network cameras, which are settled in various and complex indoor scenes, previous fixed feature selection schemes cannot meet general requirements. To properly handle these problems, first, we propose a scene-adaptive hierarchical data association scheme, which adaptively selects features with higher reliability on target representation in the applied scene, and gradually combines features to the minimum requirement of discriminating ambiguous targets; second, a novel depth-invariant part-based appearance model using RGB-D data is proposed which makes the appearance model robust to scale change, partial occlusion and view-truncation. The introduce of RGB-D data increases the diversity of features, which provides more types of features for feature selection in data association and enhances the final multi-tracking performance. We validate our method from several aspects including scene-adaptive feature selection scheme, hierarchical data association scheme and RGB-D based appearance modeling scheme in various indoor scenes, which demonstrates its effectiveness and efficiency on improving multi-tracking performances in various indoor scenes.展开更多
The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to de...The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones.展开更多
An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-t...An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with m...Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.展开更多
In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the po...In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.展开更多
In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for t...In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.展开更多
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ...Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).展开更多
Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorit...Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
The identification and classification of collective people’s activities are gaining momentum as significant themes in machine learning,with many potential applications emerging.The need for representation of collecti...The identification and classification of collective people’s activities are gaining momentum as significant themes in machine learning,with many potential applications emerging.The need for representation of collective human behavior is especially crucial in applications such as assessing security conditions and preventing crowd congestion.This paper investigates the capability of deep neural network(DNN)algorithms to achieve our carefully engineered pipeline for crowd analysis.It includes three principal stages that cover crowd analysis challenges.First,individual’s detection is represented using the You Only Look Once(YOLO)model for human detection and Kalman filter for multiple human tracking;Second,the density map and crowd counting of a certain location are generated using bounding boxes from a human detector;and Finally,in order to classify normal or abnormal crowds,individual activities are identified with pose estimation.The proposed system successfully achieves designing an effective collective representation of the crowd given the individuals in addition to introducing a significant change of crowd in terms of activities change.Experimental results onMOT20 and SDHA datasets demonstrate that the proposed system is robust and efficient.The framework achieves an improved performance of recognition and detection peoplewith a mean average precision of 99.0%,a real-time speed of 0.6ms non-maximumsuppression(NMS)per image for the SDHAdataset,and 95.3%mean average precision for MOT20 with 1.5ms NMS per image.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
Usually, only the Cramer-Rao lower bound (CRLB) of single target is taken into consideration in the state estimate of passive tracking systems. As for the case of multitarget, there are few works done due to its com...Usually, only the Cramer-Rao lower bound (CRLB) of single target is taken into consideration in the state estimate of passive tracking systems. As for the case of multitarget, there are few works done due to its complexity. The recursion formula of the posterior Cramer-Rao lower bound (PCRLB) in multitarget bearings-only tracking with the three kinds of data association is presented. Meanwhile, computer simulation is carried out for data association. The final result shows that the accuracy probability of data association has an important impact on the PCRLB.展开更多
In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Int...In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Interactive Multiple Model (IMM) estimator and feature fusion. New algorithm greatly improves the tracking performance due to the fact that IMM estimator provides better estimation and feature information enhances the accuracy of data association. The new algorithm is tested by tracking tropical fish in fish container. Experimental result shows that this algorithm can significantly reduce tracking lost rate and restrain the noises with higher computational effectiveness when compares with traditional MHT.展开更多
Multiple object tracking(MOT)in unmanned aerial vehicle(UAV)videos has attracted attention.Because of the observation perspectives of UAV,the object scale changes dramatically and is relatively small.Besides,most MOT ...Multiple object tracking(MOT)in unmanned aerial vehicle(UAV)videos has attracted attention.Because of the observation perspectives of UAV,the object scale changes dramatically and is relatively small.Besides,most MOT algorithms in UAV videos cannot achieve real-time due to the tracking-by-detection paradigm.We propose a feature-aligned attention network(FAANet).It mainly consists of a channel and spatial attention module and a feature-aligned aggregation module.We also improve the real-time performance using the joint-detection-embedding paradigm and structural re-parameterization technique.We validate the effectiveness with extensive experiments on UAV detection and tracking benchmark,achieving new state-of-the-art 44.0 MOTA,64.6 IDF1 with 38.24 frames per second running speed on a single 1080Ti graphics processing unit.展开更多
基金supported by the National Natural Science Foundation of China(60835004 60775047+2 种基金 60872130)the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)
文摘An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.
文摘This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does not require any detection.Firstly,more information is reserved and compared with the after-detection measurements using a finite set of detected points.It can significantly improve the tracking performance,especially in low signal-to-noise ratio.Secondly,it inherits the advantages of the multi-Bernoulli approximation which models each of the targets individually.This allows more accurate multi-target state estimation,especially when targets cross.The proposed filter does not need clustering step and simulation results showcase the improved performance of the proposed filter.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
基金This work is supported by National Natural Science Foundation of China (NSFC, No. 61340046), National High Technology Research and Development Program of China (863 Program, No. 2006AA04Z247), Scientific and Technical Innovation Commission of Shenzhen Municipality (JCYJ20130331144631730, JCYJ20130331144716089), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130001110011).
文摘Indoor multi-tracking is more challenging compared with outdoor tasks due to frequent occlusion, view-truncation, severe scale change and pose variation, which may bring considerable unreliability and ambiguity to target representation and data association. So discriminative and reliable target representation is vital for accurate data association in multi-tracking. Pervious works always combine bunch of features to increase the discriminative power, but this is prone to error accumulation and unnecessary computational cost, which may increase ambiguity on the contrary. Moreover, reliability of a same feature in different scenes may vary a lot, especially for currently widespread network cameras, which are settled in various and complex indoor scenes, previous fixed feature selection schemes cannot meet general requirements. To properly handle these problems, first, we propose a scene-adaptive hierarchical data association scheme, which adaptively selects features with higher reliability on target representation in the applied scene, and gradually combines features to the minimum requirement of discriminating ambiguous targets; second, a novel depth-invariant part-based appearance model using RGB-D data is proposed which makes the appearance model robust to scale change, partial occlusion and view-truncation. The introduce of RGB-D data increases the diversity of features, which provides more types of features for feature selection in data association and enhances the final multi-tracking performance. We validate our method from several aspects including scene-adaptive feature selection scheme, hierarchical data association scheme and RGB-D based appearance modeling scheme in various indoor scenes, which demonstrates its effectiveness and efficiency on improving multi-tracking performances in various indoor scenes.
文摘The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones.
基金The National Natural Science Foundation of China(No. 60972001 )the Science and Technology Plan of Suzhou City(No. SG201076)
文摘An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金supported by the National Natural Science Foundation of China(61671137)。
文摘Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.
基金This work was supported by National Natural Science Foundation of China,Nos.62002359 and 61836015the Beijing Advanced Discipline Fund,No.115200S001.
文摘In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.
基金This work was supported in part by the Beijing Natural Science Foundation(L191004)the National Natural Science Foundation of China under No.61720106007 and No.61872047+1 种基金the Beijing Nova Program under No.Z201100006820124the Funds for Cre ative Research Groups of China under No.61921003,and the 111 Project(B18008).
文摘In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.
文摘Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).
文摘Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
文摘The identification and classification of collective people’s activities are gaining momentum as significant themes in machine learning,with many potential applications emerging.The need for representation of collective human behavior is especially crucial in applications such as assessing security conditions and preventing crowd congestion.This paper investigates the capability of deep neural network(DNN)algorithms to achieve our carefully engineered pipeline for crowd analysis.It includes three principal stages that cover crowd analysis challenges.First,individual’s detection is represented using the You Only Look Once(YOLO)model for human detection and Kalman filter for multiple human tracking;Second,the density map and crowd counting of a certain location are generated using bounding boxes from a human detector;and Finally,in order to classify normal or abnormal crowds,individual activities are identified with pose estimation.The proposed system successfully achieves designing an effective collective representation of the crowd given the individuals in addition to introducing a significant change of crowd in terms of activities change.Experimental results onMOT20 and SDHA datasets demonstrate that the proposed system is robust and efficient.The framework achieves an improved performance of recognition and detection peoplewith a mean average precision of 99.0%,a real-time speed of 0.6ms non-maximumsuppression(NMS)per image for the SDHAdataset,and 95.3%mean average precision for MOT20 with 1.5ms NMS per image.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
文摘Usually, only the Cramer-Rao lower bound (CRLB) of single target is taken into consideration in the state estimate of passive tracking systems. As for the case of multitarget, there are few works done due to its complexity. The recursion formula of the posterior Cramer-Rao lower bound (PCRLB) in multitarget bearings-only tracking with the three kinds of data association is presented. Meanwhile, computer simulation is carried out for data association. The final result shows that the accuracy probability of data association has an important impact on the PCRLB.
基金Supported by the National Natural Science Foundation of China (No. 60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No. 085102GN00)
文摘In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Interactive Multiple Model (IMM) estimator and feature fusion. New algorithm greatly improves the tracking performance due to the fact that IMM estimator provides better estimation and feature information enhances the accuracy of data association. The new algorithm is tested by tracking tropical fish in fish container. Experimental result shows that this algorithm can significantly reduce tracking lost rate and restrain the noises with higher computational effectiveness when compares with traditional MHT.
基金This work was supported by National Program on Key Basic Research Project(No.2014CB744903)National Natural Science Foundation of China(Nos.61673270 and 61973212)Key Technology Research Program of Sichuan Provincial Department of Science and Technology(No.2020YFSY0027).
文摘Multiple object tracking(MOT)in unmanned aerial vehicle(UAV)videos has attracted attention.Because of the observation perspectives of UAV,the object scale changes dramatically and is relatively small.Besides,most MOT algorithms in UAV videos cannot achieve real-time due to the tracking-by-detection paradigm.We propose a feature-aligned attention network(FAANet).It mainly consists of a channel and spatial attention module and a feature-aligned aggregation module.We also improve the real-time performance using the joint-detection-embedding paradigm and structural re-parameterization technique.We validate the effectiveness with extensive experiments on UAV detection and tracking benchmark,achieving new state-of-the-art 44.0 MOTA,64.6 IDF1 with 38.24 frames per second running speed on a single 1080Ti graphics processing unit.