The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes...The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes increasing, the grains of the alloy are graduallyrefined and the hardness increases correspondingly. After ten passes of upsetting extrusionprocessing, the grain size decreases to less than 200 nm in diameter and the sample maintains itsoriginal shape, while the hardness is double owing to equal-axial ultrafine grains and workhardening effect caused by large plastic deformation.展开更多
We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU ...We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU with multiple bit upset (MBU),and find that their characteristics are different. Methods to avoid MNU are also discussed.展开更多
Experimental evidence is presented relevant to the angular dependences of multiple-bit upset (MBU) rates and patterns in static random access memories (SRAMs) under heavy ion irradiation. The single event upset (...Experimental evidence is presented relevant to the angular dependences of multiple-bit upset (MBU) rates and patterns in static random access memories (SRAMs) under heavy ion irradiation. The single event upset (SEU) cross sections under tilted ion strikes are overestimated by 23.9%-84.6%, compared with under normally incident ion with the equivalent linear energy transfer (LET) value of 41 MeV/(mg/cm2), which can be partially explained by the fact that the MBU rate for tilted ions of 30° is 8.5%-9.8% higher than for normally incident ions. While at a lower LET of - 9.5 MeV/(mg/cm2), no clear discrepancy is observed. Moreover, since the ion trajectories at normal and tilted incidences are different, the predominant double-bit upset (DBU) patterns measured are different in both conditions. Those differences depend on the LET values of heavy ions and devices under test. Thus, effective LET method should be used carefully in ground-based testing of single event effects (SEE) sensitivity, especially in MBU-sensitive devices.展开更多
This paper combines improved Hamming codes and parity codes to assure the reliability of memory in presence of multiple bit upsets with low cost overhead.The redundancy bits of improved Hamming codes will be appended ...This paper combines improved Hamming codes and parity codes to assure the reliability of memory in presence of multiple bit upsets with low cost overhead.The redundancy bits of improved Hamming codes will be appended at the end of data bits,which eliminates the overhead of interspersing the redundancy bits at the encoder and decoder.The reliability of memory is further enhanced by the layout architecture of redundancy bits and data bits.The proposed scheme has been implemented in Verilog and synthesized using the Synopsys tools.The results reveal that the proposed method has about 19% less area penalties and 13% less power consumption comparing with the current two-dimensional error codes,and its latency of encoder and decoder is 63% less than that of Hamming codes.展开更多
Experimental evidence is presented showing obvious azimuthal dependence of single event upsets(SEU) and multiple-bit upset(MBU) patterns in radiation hardened by design(RHBD) and MBU-sensitive static random access mem...Experimental evidence is presented showing obvious azimuthal dependence of single event upsets(SEU) and multiple-bit upset(MBU) patterns in radiation hardened by design(RHBD) and MBU-sensitive static random access memories(SRAMs), due to the anisotropic device layouts. Depending on the test devices, a discrepancy from 24.5% to 50% in the SEU cross sections of dual interlock cell(DICE) SRAMs is shown between two perpendicular ion azimuths under the same tilt angle. Significant angular dependence of the SEU data in this kind of design is also observed, which does not fit the inverse-cosine law in the effective LET method. Ion trajectory-oriented MBU patterns are identified, which is also affected by the topological distribution of sensitive volumes. Due to that the sensitive volumes are periodically isolated by the BL/BLB contacts along the Y-axis direction, double-bit upsets along the X-axis become the predominant configuration under normal incidence.Predominant triple-bit upset and quadruple-bit upset patterns are the same under different ion azimuths(Lshaped and square-shaped configurations, respectively). Those results suggest that traditional RPP/IRPP model should be promoted to consider the azimuthal and angular dependence of single event effects in certain designs.During earth-based evaluation of SEE sensitivity, worst case beam direction, i.e., the worst case response, should be revealed to avoid underestimation of the on-orbit error rate.展开更多
We investigate the impact of heavy ion irradiation on a hypothetical static random access memory (SRAM) device. Influences of the irradiation angle, critical charge, drain-drain spacing, and dimension of device stru...We investigate the impact of heavy ion irradiation on a hypothetical static random access memory (SRAM) device. Influences of the irradiation angle, critical charge, drain-drain spacing, and dimension of device structure on the device sensitivity have been studied. These prediction and simulated results are interpreted with MUFPSA, a Monte Carlo code based on Geant4. The results show that the orientation of ion beams and device with different critical charge exert indis- pensable effects on multiple-bit upsets (MBUs), and that with the decrease in spacing distance between adjacent cells or the dimension of the cells, the device is more susceptible to single event effect, especially to MBUs at oblique incidence.展开更多
In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the para...In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the parasitic bipolar amplification, it bring us to study the impact of neutron irradiation on the SRAM's MCU sensitivity. After the neutron experiment, we test the devices' function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices' MCU sensitivity pre- and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse. Finally, we use the electric static discharge (ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.展开更多
Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4...Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ^(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.展开更多
For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide th...For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide the actual MCU response of devices and proposing an effective MCU distinction method are urgently needed.In this study,high-and medium-energy heavy-ion irradiations for the configuration random-access memory of 28 nm FPGAs are performed.An MCU extraction method supported by theoretical predictions is proposed to study the MCU sizes,shapes,and frequencies in detail.Based on the extraction method,the different percentages,and orientations of the large MCUs in both the azimuth and zenith directions determine the worse irradiation response of the FPGAs.The extracted largest 9-bit MCUs indicate that high-energy heavy ions can induce more severe failures than medium-energy ones.The results show that both the use of high-energy heavy ions during MCU evaluations and effective protection for the application of high-density 28 nm FPGAs in space are extremely necessary.展开更多
In this paper, the characterization of single event multiple cell upsets(MCUs) in a custom SRAM is performed in a 65 nm triple-well CMOS technology, and O(linear energy transfer(LET) = 3.1 Me V cm2/mg), Ti(LET = 22.2 ...In this paper, the characterization of single event multiple cell upsets(MCUs) in a custom SRAM is performed in a 65 nm triple-well CMOS technology, and O(linear energy transfer(LET) = 3.1 Me V cm2/mg), Ti(LET = 22.2 Me V cm2/mg) and Ge(LET = 37.4 Me V cm2/mg) particles are employed. The experimental results show that the percentage of MCU events in total upset events is 71.11%, 83.47% and 85.53% at O, Ti and Ge exposures. Moreover, due to the vertical well isolation layout, 100%(O), 100%(Ti) and 98.11%(Ge) MCU cluster just present at one or two adjacent columns, but there are still 4 cell upsets in one MCU cluster appearing on the same word wire. The characterization indicates that MCUs have become the main source of soft errors in SRAM, and even though combining the storage array interleaving distance(ID) scheme with the error detection and correction(EDAC) technique, the MCUs cannot be completely eliminated, new radiation hardened by design techniques still need to be further studied.展开更多
Single event multiple-cell upsets(MCU) increase sharply with the semiconductor devices scaling. The impacts of several test factors on heavy ion single event MCU in 65 nm SRAM are studied based on the buildup of MCU...Single event multiple-cell upsets(MCU) increase sharply with the semiconductor devices scaling. The impacts of several test factors on heavy ion single event MCU in 65 nm SRAM are studied based on the buildup of MCU test data acquiring and processing technique, including the heavy ion LET, the tilt angle, the device orientation, the test pattern and the supply voltage; the MCU physical bitmaps are extracted correspondingly. The dependencies of parameters such as the MCU percentage, MCU mean and topological pattern on these factors are summarized and analyzed. This work is meaningful for developing a more reasonable single event test method and assessing the effectiveness of anti-MCU strategies on nanometer-scale devices.展开更多
基金This project is financially supported by the Natural Science Foundation (No. E5305293) of South China University of Technology.
文摘The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes increasing, the grains of the alloy are graduallyrefined and the hardness increases correspondingly. After ten passes of upsetting extrusionprocessing, the grain size decreases to less than 200 nm in diameter and the sample maintains itsoriginal shape, while the hardness is double owing to equal-axial ultrafine grains and workhardening effect caused by large plastic deformation.
文摘We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU with multiple bit upset (MBU),and find that their characteristics are different. Methods to avoid MNU are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,and 11005134)
文摘Experimental evidence is presented relevant to the angular dependences of multiple-bit upset (MBU) rates and patterns in static random access memories (SRAMs) under heavy ion irradiation. The single event upset (SEU) cross sections under tilted ion strikes are overestimated by 23.9%-84.6%, compared with under normally incident ion with the equivalent linear energy transfer (LET) value of 41 MeV/(mg/cm2), which can be partially explained by the fact that the MBU rate for tilted ions of 30° is 8.5%-9.8% higher than for normally incident ions. While at a lower LET of - 9.5 MeV/(mg/cm2), no clear discrepancy is observed. Moreover, since the ion trajectories at normal and tilted incidences are different, the predominant double-bit upset (DBU) patterns measured are different in both conditions. Those differences depend on the LET values of heavy ions and devices under test. Thus, effective LET method should be used carefully in ground-based testing of single event effects (SEE) sensitivity, especially in MBU-sensitive devices.
基金Sponsored by the Opening Project of National Key Laboratory of Science and Technology on Reliability PhysicsApplication Technology of Electrical Component(Grant No.ZHD200903)
文摘This paper combines improved Hamming codes and parity codes to assure the reliability of memory in presence of multiple bit upsets with low cost overhead.The redundancy bits of improved Hamming codes will be appended at the end of data bits,which eliminates the overhead of interspersing the redundancy bits at the encoder and decoder.The reliability of memory is further enhanced by the layout architecture of redundancy bits and data bits.The proposed scheme has been implemented in Verilog and synthesized using the Synopsys tools.The results reveal that the proposed method has about 19% less area penalties and 13% less power consumption comparing with the current two-dimensional error codes,and its latency of encoder and decoder is 63% less than that of Hamming codes.
基金Supported by National Natural Science Foundation of China(Nos.11179003,10975164,61204112 and 61204116)China Postdoctoral Science Foundation(No.2014M552170)
文摘Experimental evidence is presented showing obvious azimuthal dependence of single event upsets(SEU) and multiple-bit upset(MBU) patterns in radiation hardened by design(RHBD) and MBU-sensitive static random access memories(SRAMs), due to the anisotropic device layouts. Depending on the test devices, a discrepancy from 24.5% to 50% in the SEU cross sections of dual interlock cell(DICE) SRAMs is shown between two perpendicular ion azimuths under the same tilt angle. Significant angular dependence of the SEU data in this kind of design is also observed, which does not fit the inverse-cosine law in the effective LET method. Ion trajectory-oriented MBU patterns are identified, which is also affected by the topological distribution of sensitive volumes. Due to that the sensitive volumes are periodically isolated by the BL/BLB contacts along the Y-axis direction, double-bit upsets along the X-axis become the predominant configuration under normal incidence.Predominant triple-bit upset and quadruple-bit upset patterns are the same under different ion azimuths(Lshaped and square-shaped configurations, respectively). Those results suggest that traditional RPP/IRPP model should be promoted to consider the azimuthal and angular dependence of single event effects in certain designs.During earth-based evaluation of SEE sensitivity, worst case beam direction, i.e., the worst case response, should be revealed to avoid underestimation of the on-orbit error rate.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179003, 10975164, 10805062, and 11005134)
文摘We investigate the impact of heavy ion irradiation on a hypothetical static random access memory (SRAM) device. Influences of the irradiation angle, critical charge, drain-drain spacing, and dimension of device structure on the device sensitivity have been studied. These prediction and simulated results are interpreted with MUFPSA, a Monte Carlo code based on Geant4. The results show that the orientation of ion beams and device with different critical charge exert indis- pensable effects on multiple-bit upsets (MBUs), and that with the decrease in spacing distance between adjacent cells or the dimension of the cells, the device is more susceptible to single event effect, especially to MBUs at oblique incidence.
文摘In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the parasitic bipolar amplification, it bring us to study the impact of neutron irradiation on the SRAM's MCU sensitivity. After the neutron experiment, we test the devices' function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices' MCU sensitivity pre- and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse. Finally, we use the electric static discharge (ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.
基金supported by the Fundamental Research Funds for the Central Universities(No.HIT.KISTP.201404)Harbin science and innovation research special fund(No.2015RAXXJ003)Special fund for development of Shenzhen strategic emerging industries(No.JCYJ20150625142543456)
文摘Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ^(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.
基金supported by the National Natural Science Foundation of China(Nos.12035019 and 11690041).
文摘For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide the actual MCU response of devices and proposing an effective MCU distinction method are urgently needed.In this study,high-and medium-energy heavy-ion irradiations for the configuration random-access memory of 28 nm FPGAs are performed.An MCU extraction method supported by theoretical predictions is proposed to study the MCU sizes,shapes,and frequencies in detail.Based on the extraction method,the different percentages,and orientations of the large MCUs in both the azimuth and zenith directions determine the worse irradiation response of the FPGAs.The extracted largest 9-bit MCUs indicate that high-energy heavy ions can induce more severe failures than medium-energy ones.The results show that both the use of high-energy heavy ions during MCU evaluations and effective protection for the application of high-density 28 nm FPGAs in space are extremely necessary.
基金supported by the National Natural Science Foundation of China(Grant No.61504169)the Preliminary Research Program of National University of Defense Technology of China(Grant No.0100066314001)
文摘In this paper, the characterization of single event multiple cell upsets(MCUs) in a custom SRAM is performed in a 65 nm triple-well CMOS technology, and O(linear energy transfer(LET) = 3.1 Me V cm2/mg), Ti(LET = 22.2 Me V cm2/mg) and Ge(LET = 37.4 Me V cm2/mg) particles are employed. The experimental results show that the percentage of MCU events in total upset events is 71.11%, 83.47% and 85.53% at O, Ti and Ge exposures. Moreover, due to the vertical well isolation layout, 100%(O), 100%(Ti) and 98.11%(Ge) MCU cluster just present at one or two adjacent columns, but there are still 4 cell upsets in one MCU cluster appearing on the same word wire. The characterization indicates that MCUs have become the main source of soft errors in SRAM, and even though combining the storage array interleaving distance(ID) scheme with the error detection and correction(EDAC) technique, the MCUs cannot be completely eliminated, new radiation hardened by design techniques still need to be further studied.
文摘Single event multiple-cell upsets(MCU) increase sharply with the semiconductor devices scaling. The impacts of several test factors on heavy ion single event MCU in 65 nm SRAM are studied based on the buildup of MCU test data acquiring and processing technique, including the heavy ion LET, the tilt angle, the device orientation, the test pattern and the supply voltage; the MCU physical bitmaps are extracted correspondingly. The dependencies of parameters such as the MCU percentage, MCU mean and topological pattern on these factors are summarized and analyzed. This work is meaningful for developing a more reasonable single event test method and assessing the effectiveness of anti-MCU strategies on nanometer-scale devices.