BACKGROUND Combined spinal-epidural(CSE)anesthesia is the preferred anesthesia method for cesarean delivery.The use of an epidural catheter is essential for administering additional drugs intraoperatively and managing...BACKGROUND Combined spinal-epidural(CSE)anesthesia is the preferred anesthesia method for cesarean delivery.The use of an epidural catheter is essential for administering additional drugs intraoperatively and managing postoperative pain.However,the insertion of epidural catheters is associated with various complications,such as total spinal anesthesia,symptoms indicative of spinal nerve root irritation,and challenges in epidural catheter removal.CASE SUMMARY We present a case report of a challenging epidural catheter removal due to knotting.The lumbar computed tomography scan results revealed that the catheter formed a tight knot in the epidural space.We used a novel extubation method and successfully removed the catheter.CONCLUSION The operator can use opposite forces to"spiral"apart the spinal joints by positioning the patient's body in a specific position.The findings indicate that,when combined with imaging examination results,this method is effective for the removal of epidural catheters.展开更多
Understanding the factors that contribute to population stability in long-distance migrant birds is increasingly important, particularly given global climate change, sea level rise, and loss or disturbance at essentia...Understanding the factors that contribute to population stability in long-distance migrant birds is increasingly important, particularly given global climate change, sea level rise, and loss or disturbance at essential habitats. While the populations of most shorebirds are declining worldwide, those that migrate through Delaware Bay, New Jersey and Delaware, are declining at the most rapid rate despite conservation efforts. In this paper, we 1) provide background information on population declines of red knots (Calidris canutus rufa) using Delaware Bay, threats to their foraging, and efforts to reduce threats, 2) summarize briefly our studies of the effects of human activities on knots and other shorebirds, 3) present data on management efforts to protect knots and other shorebirds from the activities of people, and 4) discuss the efficacy of such efforts (usually referred to as “decreasing the effect of human disturbances”). The Shorebird Project on Delaware Bay is over 25 years old and provides long-term data to help assess the status of shorebird numbers, particularly for red knot, as well as the density of horseshoe crabs (Limulus polyphemus) and their eggs. Red knots have continued to decline even more precipitously in the last few years, presenting cause for concern. Protective efforts have been successful in reducing human disruption on the N.J. Delaware Bay beaches, but the lack of uniformity in implementation across the New Jersey side, and across the whole Bay have hampered further improvements. Implementation of signs, fencing, and stewards on some beaches significantly enhanced the use of these beaches by red knots, determined by examining the use of beaches pre- and post-implementation. Implementation of fencing and stewards had the greatest effect. From 1986 to 2018, there was a significant shift in the percent of Delaware Bay red knots using the NJ side, where protection efforts had been implemented on many of the beaches. Merely restricting access (without fencing or other efforts) did not result in more knots using the beaches post-restriction. This is the first paper that clearly shows the protective effects of having beach stewards. We discuss the long-term needs for continued management of Delaware Bay beaches, and other beaches coastwide, and of determining the causes of population declines of red knots.展开更多
The comprehensive utilization of wood is the main goal of log cutting,but knot defects increase the diffi-culty of rationally optimizing cutting.Due to the lack of real shape data of knot defects in logs,it is diffi c...The comprehensive utilization of wood is the main goal of log cutting,but knot defects increase the diffi-culty of rationally optimizing cutting.Due to the lack of real shape data of knot defects in logs,it is diffi cult for detection methods to establish a correlation between signal and defect morphology.An image-processing method is proposed for knot inversion based on distance regularized level set segmentation(DRLSE)and spatial vertex clustering,and with the inversion of the defects existing relative board position in the log,an inversion model of the knot defect is established.First,the defect edges of the top and bottom images of the boards are extracted by DRLSE and ellipse fi tting,and the major axes of the ellipses made coplanar by angle correction;second,the coordinate points of the top and bottom ellipse edges are extracted to form a spatial straight line;third,to solve the intersection dispersion of spatial straight lines and the major axis plane,K-medoids clustering is used to locate the vertex.Finally,with the vertex and the large ellipse,a 3D cone model is constructed which can be used to invert the shape of knots in the board.The experiment was conducted on ten defective larch boards,and the experimental results showed that this method can accurately invert the shapes of defects in solid wood boards with the advantages of low cost and easy operation.展开更多
文摘BACKGROUND Combined spinal-epidural(CSE)anesthesia is the preferred anesthesia method for cesarean delivery.The use of an epidural catheter is essential for administering additional drugs intraoperatively and managing postoperative pain.However,the insertion of epidural catheters is associated with various complications,such as total spinal anesthesia,symptoms indicative of spinal nerve root irritation,and challenges in epidural catheter removal.CASE SUMMARY We present a case report of a challenging epidural catheter removal due to knotting.The lumbar computed tomography scan results revealed that the catheter formed a tight knot in the epidural space.We used a novel extubation method and successfully removed the catheter.CONCLUSION The operator can use opposite forces to"spiral"apart the spinal joints by positioning the patient's body in a specific position.The findings indicate that,when combined with imaging examination results,this method is effective for the removal of epidural catheters.
文摘Understanding the factors that contribute to population stability in long-distance migrant birds is increasingly important, particularly given global climate change, sea level rise, and loss or disturbance at essential habitats. While the populations of most shorebirds are declining worldwide, those that migrate through Delaware Bay, New Jersey and Delaware, are declining at the most rapid rate despite conservation efforts. In this paper, we 1) provide background information on population declines of red knots (Calidris canutus rufa) using Delaware Bay, threats to their foraging, and efforts to reduce threats, 2) summarize briefly our studies of the effects of human activities on knots and other shorebirds, 3) present data on management efforts to protect knots and other shorebirds from the activities of people, and 4) discuss the efficacy of such efforts (usually referred to as “decreasing the effect of human disturbances”). The Shorebird Project on Delaware Bay is over 25 years old and provides long-term data to help assess the status of shorebird numbers, particularly for red knot, as well as the density of horseshoe crabs (Limulus polyphemus) and their eggs. Red knots have continued to decline even more precipitously in the last few years, presenting cause for concern. Protective efforts have been successful in reducing human disruption on the N.J. Delaware Bay beaches, but the lack of uniformity in implementation across the New Jersey side, and across the whole Bay have hampered further improvements. Implementation of signs, fencing, and stewards on some beaches significantly enhanced the use of these beaches by red knots, determined by examining the use of beaches pre- and post-implementation. Implementation of fencing and stewards had the greatest effect. From 1986 to 2018, there was a significant shift in the percent of Delaware Bay red knots using the NJ side, where protection efforts had been implemented on many of the beaches. Merely restricting access (without fencing or other efforts) did not result in more knots using the beaches post-restriction. This is the first paper that clearly shows the protective effects of having beach stewards. We discuss the long-term needs for continued management of Delaware Bay beaches, and other beaches coastwide, and of determining the causes of population declines of red knots.
基金supported fi nancially by the China State Forestry Administration“948”projects(2015-4-52),and Hei-longjiang Natural Science Foundation(C2017005).
文摘The comprehensive utilization of wood is the main goal of log cutting,but knot defects increase the diffi-culty of rationally optimizing cutting.Due to the lack of real shape data of knot defects in logs,it is diffi cult for detection methods to establish a correlation between signal and defect morphology.An image-processing method is proposed for knot inversion based on distance regularized level set segmentation(DRLSE)and spatial vertex clustering,and with the inversion of the defects existing relative board position in the log,an inversion model of the knot defect is established.First,the defect edges of the top and bottom images of the boards are extracted by DRLSE and ellipse fi tting,and the major axes of the ellipses made coplanar by angle correction;second,the coordinate points of the top and bottom ellipse edges are extracted to form a spatial straight line;third,to solve the intersection dispersion of spatial straight lines and the major axis plane,K-medoids clustering is used to locate the vertex.Finally,with the vertex and the large ellipse,a 3D cone model is constructed which can be used to invert the shape of knots in the board.The experiment was conducted on ten defective larch boards,and the experimental results showed that this method can accurately invert the shapes of defects in solid wood boards with the advantages of low cost and easy operation.