Effects of Mg^2+, NTPs and Taq DNA polymerase in pear SSR-PCR system were analyzed by quadratic regressive orthogonal rotational combinational design. Results showed: absolute IOD (Integrated OD of each band) valu...Effects of Mg^2+, NTPs and Taq DNA polymerase in pear SSR-PCR system were analyzed by quadratic regressive orthogonal rotational combinational design. Results showed: absolute IOD (Integrated OD of each band) value of target band reduced with concentration rising of Mg^2+ and Taq DNA polymerase, but heightened with concentration rising of dNTPs. The decay rate of absolute IOD value increased progressively with rising Mg^2+ concentration, decreased gradually with rising Taq DNA polymerase concentration; the rising speed would be slower than the dNTPs increase. Absolute IOD value would reduce with concentration rising of dNTPs at a low level of Mg^2+ concentration. Conversely it would rise with the increase of dNTPs while high Mg^2+ concentration. Absolute IOD value would generally rise with concentration rising of Taq DNA polymerase while low Mg^2+ concentration. On the contrary it would reduce with concentration rising of Taq DNA polymerase while high Mg^2+ concentration.展开更多
The thermodynamic features of the Reiner-Rivlin nanoliquid flow induced by a spinning disk are analyzed numerically.The non-homogeneous two-phase nanofluid model is considered to analyze the effect of nanoparticles on...The thermodynamic features of the Reiner-Rivlin nanoliquid flow induced by a spinning disk are analyzed numerically.The non-homogeneous two-phase nanofluid model is considered to analyze the effect of nanoparticles on the thermodynamics of the Reiner-Rivlin nanomaterial,which also includes a temperature-dependent heat source(THS)and an exponential space-dependent heat source(ESHS).Further,the transfer of heat and mass is analyzed with velocity slip,volume fraction jump,and temperature jump boundary conditions.The finite difference method-based routine is used to solve the complicated differential equations formed after using the von-Karman similarity technique.Limiting cases of the present problem are found to be in good agreement with benchmarking studies.The relationship of the pertinent parameters with the heat and mass transport is scrutinized using correlation,which is further evaluated based on the probable error estimates.Multivariable models are fitted for the friction factor at the disk and heat transport,which accurately predict the dependent variables.The Reiner-Rivlin nanoliquid temperature is influenced comparatively more by the ESHS than by THS.The Nusselt number is decreased by the ESHS and THS,whereas the friction factor at the disk is predominantly decremented by the wall roughness aspect.The increment in the non-Newtonian characteristic of the liquid leads more fluid to drain away in the radial direction far from the disk compared with the fluid nearby the disk in the presence of the centrifugal force during rotation.The increased thermal and volume fraction slip lowers the nanoliquid temperature and nanoparticle volume fraction profiles.展开更多
文摘Effects of Mg^2+, NTPs and Taq DNA polymerase in pear SSR-PCR system were analyzed by quadratic regressive orthogonal rotational combinational design. Results showed: absolute IOD (Integrated OD of each band) value of target band reduced with concentration rising of Mg^2+ and Taq DNA polymerase, but heightened with concentration rising of dNTPs. The decay rate of absolute IOD value increased progressively with rising Mg^2+ concentration, decreased gradually with rising Taq DNA polymerase concentration; the rising speed would be slower than the dNTPs increase. Absolute IOD value would reduce with concentration rising of dNTPs at a low level of Mg^2+ concentration. Conversely it would rise with the increase of dNTPs while high Mg^2+ concentration. Absolute IOD value would generally rise with concentration rising of Taq DNA polymerase while low Mg^2+ concentration. On the contrary it would reduce with concentration rising of Taq DNA polymerase while high Mg^2+ concentration.
文摘The thermodynamic features of the Reiner-Rivlin nanoliquid flow induced by a spinning disk are analyzed numerically.The non-homogeneous two-phase nanofluid model is considered to analyze the effect of nanoparticles on the thermodynamics of the Reiner-Rivlin nanomaterial,which also includes a temperature-dependent heat source(THS)and an exponential space-dependent heat source(ESHS).Further,the transfer of heat and mass is analyzed with velocity slip,volume fraction jump,and temperature jump boundary conditions.The finite difference method-based routine is used to solve the complicated differential equations formed after using the von-Karman similarity technique.Limiting cases of the present problem are found to be in good agreement with benchmarking studies.The relationship of the pertinent parameters with the heat and mass transport is scrutinized using correlation,which is further evaluated based on the probable error estimates.Multivariable models are fitted for the friction factor at the disk and heat transport,which accurately predict the dependent variables.The Reiner-Rivlin nanoliquid temperature is influenced comparatively more by the ESHS than by THS.The Nusselt number is decreased by the ESHS and THS,whereas the friction factor at the disk is predominantly decremented by the wall roughness aspect.The increment in the non-Newtonian characteristic of the liquid leads more fluid to drain away in the radial direction far from the disk compared with the fluid nearby the disk in the presence of the centrifugal force during rotation.The increased thermal and volume fraction slip lowers the nanoliquid temperature and nanoparticle volume fraction profiles.