Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evapor...Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.展开更多
Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) sol...Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.展开更多
Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Fur...Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.展开更多
Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations o...Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.展开更多
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp...Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.展开更多
The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address ...The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address these challenges,a volume of fluid(VOF)model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures(water,glycerol,and 1,2-propylene glycol)in porous ceramics in this study.It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation,causing the fluctuations in evaporation rates.The obtained result shows a significant increase in water evaporation rates with decreasing the microcolumn size.At a pore size of 30μm and a porosity of 30%,an optimal balance between capillary forces and flow resistance yields a peak water release rate of 96.0%.Furthermore,decreasing the glycerol content from 70%to 60%enhances water release by 10.6%.The findings in this work propose the approaches to optimize evaporative cooling technologies by controlling the evaporation of mixtures in porous media.展开更多
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad...Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.展开更多
The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of ...The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.展开更多
We systematically studied the evaporation residue cross sections of ^(48)Ca-induced reactions on lanthanide and actinide target nuclei under the Dinuclear System(DNS)model framework to check the reliability and applic...We systematically studied the evaporation residue cross sections of ^(48)Ca-induced reactions on lanthanide and actinide target nuclei under the Dinuclear System(DNS)model framework to check the reliability and applicability of the model.To produce new proton-rich Fl and Lv isotopes through hot fusion reactions in the superheavy element region with Z≥104,we utilized the reactions ^(48)Ca+^(236,238,239) Pu and ^(48)Ca+^(242,243,244,250) Cm.However,owing to the detection limit of available equipment(0.1 pb),only 283Fl and 287−289Lv,which have the maximum evaporation residue cross section values of 0.149,0.130,9.522,and 0.309 pb,respectively,can be produced.Furthermore,to produce neutron-deficient isotopes of actinides near the proton drip line with Z=93−100,we attempted to generate the new isotopes(224−227Pu,228−232,237Cm)using the reactions ^(48)Ca+180,182,183 W and ^(48)Ca+^(184,186,187,192) Os.The maximum evaporation residue cross section values are 0.07,0.06,0.26,and 0.30 nb for the former set of reactions,and 1.96 pb,5.73 pb,12.16 pb,19.39 pb,54.79 pb,and 6.45 nb for the latter,respectively.These results are expected to provide new information for the future synthesis of unknown neutron-deficient isotopes.展开更多
The exploration of performance and prediction of environmentally friendly refrigerant physical properties represents a critical endeavor.Equilibriummolecular dynamics simulationswere employed to investigate the densit...The exploration of performance and prediction of environmentally friendly refrigerant physical properties represents a critical endeavor.Equilibriummolecular dynamics simulationswere employed to investigate the density and transport properties of propane and ethane at ultra-low temperatures under evaporative pressure conditions.The results of the density simulation of the evaporation conditions of the blends proved the validity of the simulation method.Under identical temperature and pressure conditions,increasing the proportion of R170 in the refrigerant blends leads to a density decrease while the temperature range in which the gas-liquid phase transition occurs is lower.The analysis of simulated results pertaining to viscosity,thermal conductivity,and self-diffusion coefficient reveals heightened deviation levels within the phase transition temperature zone.This increase in deviation attributed to intensified molecular activity.In terms of uncovering the physical mechanism of gas-liquid phase transition,the work illustrates the macroscopic phenomenon of the intensified existing disorder during phase transitions at the molecular level.Molecular dynamics simulations analyzing the thermophysical properties of refrigerant blends from a microscopic point of view can deepen the comprehension of the thermal optimization of refrigeration processes.展开更多
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e...A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.展开更多
Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis tha...Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.展开更多
[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhong...[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhongwei City, Ningxia, was acted as test materials to study the effects of different thicknesses of gravel covering on daily evaporation using evaporator overall weighing method. [Result] The daily evaporation capacity order of the gravel covering thickness was as follows: CK〉HI(5 cm)〉 H2(8 cm)〉 H3(10 cm)〉 H4(15 cm). Meanwhile, with the increase of test days, the difference of cumulative evaporation capacity between H3 (10 cm) and H4 (15 cm) decreased gradually. Soil evaporation capacity reduced at the pow- er function with the increase of gravel covering thickness, and the decision coeffi- cient of the fitted curve reached to 0.925 5. [Conclusion] With the increase of gravel covering thickness, evaporation capacity of soil reduced gradually, and the soil water content increased gradually. Gravel covering could effectively reduce the evapora- tion. The thicker of covering, the more obvious inhibition effect on evaporation. The thickness of covering should increase moderately to prevent moisture loss from e- vaporation. Gravel inhibition effect on the evaporation wasn't obvious when the gravel covering thickness reached more than 10 cm. 10 cm gravel covering was the most appropriate thickness for local natural condition. The soil evaporation capacity along with the change of gravel covering could be simulated with power function e- quation Y=at^b.展开更多
A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther- mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, ...A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther- mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, a continuous neck and a thin handle. High-resolution transmission electron microscopy and selected area electron diffraction results reveal the single-crystalline feature and the growing direction along [0001] of the nanobat. The vapor- solid mechanism was found suitable to explain the growth process of the nanobat and a schematic model was proposed in detail based on the experimental results.展开更多
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on elect...The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consis- tent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean.展开更多
A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient con...A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.展开更多
Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with diff...Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming.展开更多
The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and ...The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and spatial resolutions of 1 h and 0.313°x0.312°, respectively. The efficiency of the analysis was evaluated by processing weather buoy data from the Pacific Ocean and measuring propagation loss in the Yellow Sea of China. The distribution features of evaporation duct height (EDH) and the related meteorological factors for different seas were analyzed. The global EDH is generally high and demonstrates a latitudinal distribution for oceans at low latitudes. The average EDH is approximately 11 m over oceans beside the equator with a latitude of less than 20°. The reasons for the formation of the global EDH features were also analyzed for different sea areas.展开更多
The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly ...The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly after melting, and magnesium is partially removed. However, no significant change in content for boron and iron has been found. Langmuir's equation and Henry law were used to derive the removal effi-ciency for each impurity element. The free surface temperature was estimated by the Hertz-Knudsen-Langmuir equation and silicon's vapor pressure equation. Good agreement was found between measured and calculated impurities' removal efficiency for phosphorus, calcium and aluminum, magnesium, boron and iron. The deviation between the two results was also analyzed in depth.展开更多
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金supported by the Natural Science Foundation of Hebei Province(D202450411)the Basic Research Programme of Chinese Academy of Geological Sciences(CAGS)(YK202302).
文摘Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.
基金the financial support from the National Natural Science Foundation of China (Grant No. 52172038, 22179017)National Key Research and Development Program of China (Nos. 2022YFB4101600, 2022YFB4101601)。
文摘Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.
基金financially supported by the Research Grants Council of Hong Kong SAR(16200720)Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)+2 种基金Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Institute for Advanced Manufucturing(Project No.CD8R)the startup fund for new recruits of PolyU(Project Nos.P0038855 and P0038858)。
文摘Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.
基金supported by Chinese NSF project(42,130,114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)and Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG).
文摘Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.52162012,52262014,22368019)Key Research and Development Project of Hainan Province(Grant Nos.ZDYF2022SHFZ053,ZDYF2021GXJS209)+1 种基金Science and Technology Innovation Talent Platform Fund for South China Sea New Star of Hainan Province(Grant No.NHXXRCXM202305)Open Research Project of State Key Laboratory of Marine Resource Utilization in South China Sea(Grant No.MRUKF2023020).
文摘Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.
文摘The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address these challenges,a volume of fluid(VOF)model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures(water,glycerol,and 1,2-propylene glycol)in porous ceramics in this study.It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation,causing the fluctuations in evaporation rates.The obtained result shows a significant increase in water evaporation rates with decreasing the microcolumn size.At a pore size of 30μm and a porosity of 30%,an optimal balance between capillary forces and flow resistance yields a peak water release rate of 96.0%.Furthermore,decreasing the glycerol content from 70%to 60%enhances water release by 10.6%.The findings in this work propose the approaches to optimize evaporative cooling technologies by controlling the evaporation of mixtures in porous media.
基金This work was supported by the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101605)the National Natural Science Foundation of China(52372175,51972040)+1 种基金the Innovation and Technology Fund of Dalian(N2023JJ12GX020,2022JJ12GX023)Liaoning Normal University 2022 Outstanding Research Achievements Cultivation Fund(No.22GDL002).The authors also acknowledge the assistance of the DUT Instrumental Analysis Center.
文摘Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.
基金supported by the National Natural Science Foundation of China (Grant Nos.52375172,52075093,and 51905089).
文摘The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.
基金National Natural Science Foundation of China(Nos.12175064 and U2167203)Hunan Outstanding Youth Science Foundation(No.2022JJ10031).
文摘We systematically studied the evaporation residue cross sections of ^(48)Ca-induced reactions on lanthanide and actinide target nuclei under the Dinuclear System(DNS)model framework to check the reliability and applicability of the model.To produce new proton-rich Fl and Lv isotopes through hot fusion reactions in the superheavy element region with Z≥104,we utilized the reactions ^(48)Ca+^(236,238,239) Pu and ^(48)Ca+^(242,243,244,250) Cm.However,owing to the detection limit of available equipment(0.1 pb),only 283Fl and 287−289Lv,which have the maximum evaporation residue cross section values of 0.149,0.130,9.522,and 0.309 pb,respectively,can be produced.Furthermore,to produce neutron-deficient isotopes of actinides near the proton drip line with Z=93−100,we attempted to generate the new isotopes(224−227Pu,228−232,237Cm)using the reactions ^(48)Ca+180,182,183 W and ^(48)Ca+^(184,186,187,192) Os.The maximum evaporation residue cross section values are 0.07,0.06,0.26,and 0.30 nb for the former set of reactions,and 1.96 pb,5.73 pb,12.16 pb,19.39 pb,54.79 pb,and 6.45 nb for the latter,respectively.These results are expected to provide new information for the future synthesis of unknown neutron-deficient isotopes.
基金supported by the Open Project of the Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering and the Central Guidance on Local Science and Technology Development Fund of Shanghai City(No.YDZX20213100003002)the Special Project of Independent Innovation of Qingdao City(21-1-2-6-NSH).
文摘The exploration of performance and prediction of environmentally friendly refrigerant physical properties represents a critical endeavor.Equilibriummolecular dynamics simulationswere employed to investigate the density and transport properties of propane and ethane at ultra-low temperatures under evaporative pressure conditions.The results of the density simulation of the evaporation conditions of the blends proved the validity of the simulation method.Under identical temperature and pressure conditions,increasing the proportion of R170 in the refrigerant blends leads to a density decrease while the temperature range in which the gas-liquid phase transition occurs is lower.The analysis of simulated results pertaining to viscosity,thermal conductivity,and self-diffusion coefficient reveals heightened deviation levels within the phase transition temperature zone.This increase in deviation attributed to intensified molecular activity.In terms of uncovering the physical mechanism of gas-liquid phase transition,the work illustrates the macroscopic phenomenon of the intensified existing disorder during phase transitions at the molecular level.Molecular dynamics simulations analyzing the thermophysical properties of refrigerant blends from a microscopic point of view can deepen the comprehension of the thermal optimization of refrigeration processes.
文摘A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.
文摘Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.
基金Supported by Natural Science Research Foundation Item of Ningxia University,China(ZR1208)Science and Technology Research Item of Ningxia Colleges and Universities,China(NGY2014065)~~
文摘[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhongwei City, Ningxia, was acted as test materials to study the effects of different thicknesses of gravel covering on daily evaporation using evaporator overall weighing method. [Result] The daily evaporation capacity order of the gravel covering thickness was as follows: CK〉HI(5 cm)〉 H2(8 cm)〉 H3(10 cm)〉 H4(15 cm). Meanwhile, with the increase of test days, the difference of cumulative evaporation capacity between H3 (10 cm) and H4 (15 cm) decreased gradually. Soil evaporation capacity reduced at the pow- er function with the increase of gravel covering thickness, and the decision coeffi- cient of the fitted curve reached to 0.925 5. [Conclusion] With the increase of gravel covering thickness, evaporation capacity of soil reduced gradually, and the soil water content increased gradually. Gravel covering could effectively reduce the evapora- tion. The thicker of covering, the more obvious inhibition effect on evaporation. The thickness of covering should increase moderately to prevent moisture loss from e- vaporation. Gravel inhibition effect on the evaporation wasn't obvious when the gravel covering thickness reached more than 10 cm. 10 cm gravel covering was the most appropriate thickness for local natural condition. The soil evaporation capacity along with the change of gravel covering could be simulated with power function e- quation Y=at^b.
文摘A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther- mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, a continuous neck and a thin handle. High-resolution transmission electron microscopy and selected area electron diffraction results reveal the single-crystalline feature and the growing direction along [0001] of the nanobat. The vapor- solid mechanism was found suitable to explain the growth process of the nanobat and a schematic model was proposed in detail based on the experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174235)the Fundamental Research Funds for the Central Universities(Grant No.3102014JC02010301)
文摘The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consis- tent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean.
基金Supported by the National High Technology Research and Development Program of China(2013AA065301)the Fundamental Research Funds for the Central Universities(2016QNA4014)the State Key Laboratory of Clean Energy Utilization at Zhejiang University(ZJUCEU2016006)
文摘A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.
基金Innovation Knowledge Project of the Chinese Academy of Sciences, No.KZCX2-YW-448National Key Technology R&D Program, No.2007BAC03A06-01
文摘Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming.
基金The National Natural Science Foundation of China under contract No.11174235the Fundamental Research Funds for the Central Universities under contract No.3102014JC02010301
文摘The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and spatial resolutions of 1 h and 0.313°x0.312°, respectively. The efficiency of the analysis was evaluated by processing weather buoy data from the Pacific Ocean and measuring propagation loss in the Yellow Sea of China. The distribution features of evaporation duct height (EDH) and the related meteorological factors for different seas were analyzed. The global EDH is generally high and demonstrates a latitudinal distribution for oceans at low latitudes. The average EDH is approximately 11 m over oceans beside the equator with a latitude of less than 20°. The reasons for the formation of the global EDH features were also analyzed for different sea areas.
文摘The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly after melting, and magnesium is partially removed. However, no significant change in content for boron and iron has been found. Langmuir's equation and Henry law were used to derive the removal effi-ciency for each impurity element. The free surface temperature was estimated by the Hertz-Knudsen-Langmuir equation and silicon's vapor pressure equation. Good agreement was found between measured and calculated impurities' removal efficiency for phosphorus, calcium and aluminum, magnesium, boron and iron. The deviation between the two results was also analyzed in depth.