In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input mul...The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.展开更多
The performance and capacity of multiple-input multiple-output (MIMO) wireless channels are limited by the spatial fading correlation between antenna elements. This limitation is due to the use of mono polarized anten...The performance and capacity of multiple-input multiple-output (MIMO) wireless channels are limited by the spatial fading correlation between antenna elements. This limitation is due to the use of mono polarized antennas at receiver and transmitter sides. In this paper, in order to reduce the antenna correlation, the polarization diversity technique is employed. Although the spatial antenna correlation is attenuated for multi-polarization configurations, the cross-polar components appear. This paper highlights the impact of depolarization effect on the MIMO channel capacity for a 4×4 uniform linear antenna array. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is distributed to each of the transmit antennas. The numerical results illustrate that for low depolarization and spatial correlation, the capacity of single-polarization configuration behaves better than that of multi-polarization configuration.展开更多
Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Convent...Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Conventional adaptive antenna array-based multiple-input multiple-output (MIMO)/OFDM systems use the sub-carriers characterized by the largest eigenvalue to transmit the OFDM symbols. This paper describes the performance of adaptive subchannel assignment-based MIMO/OFDM systems over multipath fading channels, The system adaptively selects the eigenvectors associated with the relatively large subchannel eigenvalues to generate the antenna array weights at the base and mobile stations and then adaptively assigns the corresponding best subchannels to transmit the OFDM symbols. Simulation results show that the proposed system can achieve better performance than the conventional adaptive antenna arraybased MIMO/OFDM system over multipath fading channels.展开更多
This paper presents analytical expressions for the multiple-input multiple-output (MIMO) channel capacity in frequency-flat Rayleigh fading environments. An exact analytical expression is given for the ergodic capac...This paper presents analytical expressions for the multiple-input multiple-output (MIMO) channel capacity in frequency-flat Rayleigh fading environments. An exact analytical expression is given for the ergodic capacity for single-input multiple-output (SIMO) channels. The analysis shows that the SIMO channel capacity can be approximated by a Gaussian random variable and that the MIMO channel capacity can be approximated as the sum of multiple SIMO capacities. The SIMO channel results are used to derive approximate closed-form expressions for the MIMO channel ergodic capacity and the complementary cumulative distribution function (CCDF) of the MIMO channel capacity (outage capacity). Simulations show that these theoretical results are good approximations for MIMO systems with an arbitrary number of transmit or receive antennas. Moreover, these analytical expressions are relatively simple which makes them very useful for practical computations.展开更多
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金Foundation item:The National Natural Science Foundation of China(No.60496311)
文摘The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.
文摘The performance and capacity of multiple-input multiple-output (MIMO) wireless channels are limited by the spatial fading correlation between antenna elements. This limitation is due to the use of mono polarized antennas at receiver and transmitter sides. In this paper, in order to reduce the antenna correlation, the polarization diversity technique is employed. Although the spatial antenna correlation is attenuated for multi-polarization configurations, the cross-polar components appear. This paper highlights the impact of depolarization effect on the MIMO channel capacity for a 4×4 uniform linear antenna array. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is distributed to each of the transmit antennas. The numerical results illustrate that for low depolarization and spatial correlation, the capacity of single-polarization configuration behaves better than that of multi-polarization configuration.
基金Supported partially by the Hong Kong Telecom Institute ofInformation Technology and the Hong Kong Research GrantCouncil (No. HKUST6164/02E) and the Ministry of EducationFund of China (No. SRFDP20030003039)
文摘Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Conventional adaptive antenna array-based multiple-input multiple-output (MIMO)/OFDM systems use the sub-carriers characterized by the largest eigenvalue to transmit the OFDM symbols. This paper describes the performance of adaptive subchannel assignment-based MIMO/OFDM systems over multipath fading channels, The system adaptively selects the eigenvectors associated with the relatively large subchannel eigenvalues to generate the antenna array weights at the base and mobile stations and then adaptively assigns the corresponding best subchannels to transmit the OFDM symbols. Simulation results show that the proposed system can achieve better performance than the conventional adaptive antenna arraybased MIMO/OFDM system over multipath fading channels.
文摘This paper presents analytical expressions for the multiple-input multiple-output (MIMO) channel capacity in frequency-flat Rayleigh fading environments. An exact analytical expression is given for the ergodic capacity for single-input multiple-output (SIMO) channels. The analysis shows that the SIMO channel capacity can be approximated by a Gaussian random variable and that the MIMO channel capacity can be approximated as the sum of multiple SIMO capacities. The SIMO channel results are used to derive approximate closed-form expressions for the MIMO channel ergodic capacity and the complementary cumulative distribution function (CCDF) of the MIMO channel capacity (outage capacity). Simulations show that these theoretical results are good approximations for MIMO systems with an arbitrary number of transmit or receive antennas. Moreover, these analytical expressions are relatively simple which makes them very useful for practical computations.