Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ...Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.展开更多
Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternati...Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.展开更多
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping...High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is particularly important to treat the points near the inflow boundary accurately, as the information would flow into the computational domain and would affect global accuracy. In the literature, the numerical solution at these boundary points are either fixed with the exact solution, which is not always feasible, or computed with a first order discretization, which could reduce the global accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions. One is based on the numerical solutions of a first order fast sweeping method with several different mesh sizes near the boundary and a Richardson extrapolation, the other is based on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby obtaining high order solution values at the grid points near the inflow boundary. We explore these two approaches using the fast sweeping high order WENO scheme in [18] for solving the static Eikonal equation as a representative example. Numerical examples are given to demonstrate the performance of these two approaches.展开更多
Introduction Sensitive linear sweep voltammetry to have been applied to the catalytic kinetic analysis may be helpful for the application of some organic reagents to the analysis of inorganic ones by voltammetry, The ...Introduction Sensitive linear sweep voltammetry to have been applied to the catalytic kinetic analysis may be helpful for the application of some organic reagents to the analysis of inorganic ones by voltammetry, The catalytic reaction-linear sweep voltammetric method for the determination of noble metals, such as Ag, Os, Ru and Ir has been developed, but no report about the method for the determination of rhodium has been published so far.展开更多
In this paper,we propose a novel Hermite weighted essentially non-oscillatory(HWENO)fast sweeping method to solve the static Hamilton-Jacobi equations efficiently.During the HWENO reconstruction procedure,the proposed...In this paper,we propose a novel Hermite weighted essentially non-oscillatory(HWENO)fast sweeping method to solve the static Hamilton-Jacobi equations efficiently.During the HWENO reconstruction procedure,the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils.However,one major novelty and difference from the traditional HWENO framework lies in the fact that,we do not need to introduce and solve any additional equations to update the derivatives of the unknown functionϕ.Instead,we use the currentϕand the old spatial derivative ofϕto update them.The traditional HWENO fast sweeping method is also introduced in this paper for comparison,where additional equations governing the spatial derivatives ofϕare introduced.The novel HWENO fast sweeping methods are shown to yield great savings in computational time,which improves the computational efficiency of the traditional HWENO scheme.In addition,a hybrid strategy is also introduced to further reduce computational costs.Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.展开更多
文摘Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.
基金Research was supported by the NSFC Grant 11872210Research was supported by the NSFC Grant 11872210 and Grant No.MCMS-I-0120G01+1 种基金Research supported in part by the AFOSR Grant FA9550-20-1-0055NSF Grant DMS-2010107.
文摘Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
文摘High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is particularly important to treat the points near the inflow boundary accurately, as the information would flow into the computational domain and would affect global accuracy. In the literature, the numerical solution at these boundary points are either fixed with the exact solution, which is not always feasible, or computed with a first order discretization, which could reduce the global accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions. One is based on the numerical solutions of a first order fast sweeping method with several different mesh sizes near the boundary and a Richardson extrapolation, the other is based on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby obtaining high order solution values at the grid points near the inflow boundary. We explore these two approaches using the fast sweeping high order WENO scheme in [18] for solving the static Eikonal equation as a representative example. Numerical examples are given to demonstrate the performance of these two approaches.
基金Supported by the National Natural Science Foundation of China
文摘Introduction Sensitive linear sweep voltammetry to have been applied to the catalytic kinetic analysis may be helpful for the application of some organic reagents to the analysis of inorganic ones by voltammetry, The catalytic reaction-linear sweep voltammetric method for the determination of noble metals, such as Ag, Os, Ru and Ir has been developed, but no report about the method for the determination of rhodium has been published so far.
基金supported by the NSF (Grant No.DMS-1753581)supported by NSFC (Grant No.12071392).
文摘In this paper,we propose a novel Hermite weighted essentially non-oscillatory(HWENO)fast sweeping method to solve the static Hamilton-Jacobi equations efficiently.During the HWENO reconstruction procedure,the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils.However,one major novelty and difference from the traditional HWENO framework lies in the fact that,we do not need to introduce and solve any additional equations to update the derivatives of the unknown functionϕ.Instead,we use the currentϕand the old spatial derivative ofϕto update them.The traditional HWENO fast sweeping method is also introduced in this paper for comparison,where additional equations governing the spatial derivatives ofϕare introduced.The novel HWENO fast sweeping methods are shown to yield great savings in computational time,which improves the computational efficiency of the traditional HWENO scheme.In addition,a hybrid strategy is also introduced to further reduce computational costs.Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.