This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoir...This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.展开更多
Gas chromatography fingerprint technique has the advantages of fast performance and low cost. It can be used to conduct analysis without interruption either in the field or at laboratory. This technique has been used ...Gas chromatography fingerprint technique has the advantages of fast performance and low cost. It can be used to conduct analysis without interruption either in the field or at laboratory. This technique has been used successfully in such cases that conventional production logging techniques are powerless. Taking low-concentration anthracene as internal standard, we calculated the absolute concentrations!of fingerprints, initially made some experiments directly on biodegradation of crude oils, and calculated production allocation in the Gudong Oil field. Compared with the production logging, this method has made up for the deficiencies of the former GC fingerprint technique. It will find wide applications in monitoring the trend of production in various oil-fields.展开更多
Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques i...Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques in studying the production contributions of single layers in heavy oil commingled wells has limitations.However,aromatic compounds are relatively well preserved.We took the heavy oil commingled wells of small layers NG55 and NG61 in the ninth area of the Gudong oil field as examples.Based on the principle of chromatography,the whole-oil GC-MS was used,and the aromatic parameters which have a strongly linear relationship with the ratio of mixed two end member oils were verified and selected in laboratory.Studies showed that the ratio of (1,4,6-+ 2,3,6-trimethylnaphthalene) to 1,2,5-trimethylnaphthalene has a strongly linear relationship with the ratio of the mixed two end member oils (R2=0.992).The oil contributions from single layers NG55 and NG61 in six commingled heavy oil wells were calculated using established charts and this relationship.The calculated results are consistent with the results of long period dynamic monitoring and logging interpretation in the study area and can provide a scientific basis for monitoring production performance and hierarchical management of reservoirs.The study provides a new geochemical method for calculation of the contributions of single layers in heavy oil commingled wells when conventional fluid production profile logging is not suitable.展开更多
Gas drainage is carried out based on output from each coal bed throughout commingling production of coalbed methane(CBM).A reasonable drainage process should therefore initially guarantee main coal bed production and ...Gas drainage is carried out based on output from each coal bed throughout commingling production of coalbed methane(CBM).A reasonable drainage process should therefore initially guarantee main coal bed production and then enhance gas output from other beds.Permanent damage can result if this is not the case,especially with regard to fracture development in the main gas-producing coal bed and can greatly reduce single well output.Current theoretical models and measuring devices are inapplicable to commingled CBM drainage,however,and so large errors in predictive models cannot always be avoided.The most effective currently available method involves directly measuring gas output from each coal bed as well as determining the dominant gas-producing unit.A dynamic evaluation technique for gas output from each coal bed during commingling CBM production is therefore proposed in this study.This technique comprises a downhole measurement system combined with a theoretical calculation model.Gas output parameters(i.e.,gas-phase flow rate,temperature,pressure)are measured in this approach via a downhole measurement system;substituting these parameters into a deduced theoretical calculation model then means that gas output from each seam can be calculated to determine the main gas-producing unit.Trends in gas output from a single well or each seam can therefore be predicted.The laboratory and field test results presented here demonstrate that calculation errors in CBM outputs can be controlled within a margin of 15%and therefore conform with field use requirements.展开更多
Based on the productivity equation of coalbed methane(CBM) wells, three indexes, main production layer optimization index, main production layer expansion index and capacity contribution index are proposed, with which...Based on the productivity equation of coalbed methane(CBM) wells, three indexes, main production layer optimization index, main production layer expansion index and capacity contribution index are proposed, with which the three-step optimization method of production-layer combination is established. In selecting main production layer, the coal seam thickness, CBM content, coal seam permeability, coal seam reservoir pressure and coal structure are considered comprehensively to evaluate the potential of the production layer. In selecting expansion of the main production layer combination, on the premise of ensuring full and slow desorption of the main production layer and non-exposure of the main production layer out of liquid surface, the degree of mutual interference between the main and non-main production layers is comprehensively evaluated by coupling the critical desorption pressure, layer spacing and reservoir pressure gradient difference. In optimizing production layer combination, the main concern is the economic efficiency of the combined layers. Only when the contribution coefficient of the main production layer is greater than 30% and the contribution index of the other production layers is more than 10%, the economic benefit of a CBM well after being put into production can be ensured. Based on the comparative analysis of the development effect of the development test wells in Songhe of Guizhou province, it is proved that the "three-step method" for the optimization of production-layer combination is scientific and practical, and can be used to design the multi-layer commingling scheme of coalbed methane.展开更多
Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum tech...Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum technique, has been established. The standard plate was drawn using the extinction coefficient E of sample oils formulated artificially as y-axis and the wavelength as x-axis. The curve resulting from the UV analysis of sample oils in the commingled well was inserted into the standard plate and compared. The proportion of each single zone in the commingled producing well was identical with the proportion of the curve which is closest to the curve of sample oils formulated artificially. In the well QHD32-6-3 field, taking well A22 for example and using this method, the production contribution of a single zone was calculated. The result showed that the Nm4 zone is a major "contributor", the proportion of the Nm4 zone is 70%, and that of the Nm1 zone is 30%. The ultraviolet spectrum technique provided a new reservoir geochemical technique of monitoring production contribution, especially for biodegraded heavy oil, but it has some limitation, just depending on the GC fingerprint technique.展开更多
文摘This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.
文摘Gas chromatography fingerprint technique has the advantages of fast performance and low cost. It can be used to conduct analysis without interruption either in the field or at laboratory. This technique has been used successfully in such cases that conventional production logging techniques are powerless. Taking low-concentration anthracene as internal standard, we calculated the absolute concentrations!of fingerprints, initially made some experiments directly on biodegradation of crude oils, and calculated production allocation in the Gudong Oil field. Compared with the production logging, this method has made up for the deficiencies of the former GC fingerprint technique. It will find wide applications in monitoring the trend of production in various oil-fields.
基金supported by the Gudong Oil Production Plant of Shengli Oilfield Subsidiary Company,China Postdoctoral Science Foundation(Project 2013M530681)Hubei Province Natural Science Foundation(Project 2013CFB394)
文摘Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques in studying the production contributions of single layers in heavy oil commingled wells has limitations.However,aromatic compounds are relatively well preserved.We took the heavy oil commingled wells of small layers NG55 and NG61 in the ninth area of the Gudong oil field as examples.Based on the principle of chromatography,the whole-oil GC-MS was used,and the aromatic parameters which have a strongly linear relationship with the ratio of mixed two end member oils were verified and selected in laboratory.Studies showed that the ratio of (1,4,6-+ 2,3,6-trimethylnaphthalene) to 1,2,5-trimethylnaphthalene has a strongly linear relationship with the ratio of the mixed two end member oils (R2=0.992).The oil contributions from single layers NG55 and NG61 in six commingled heavy oil wells were calculated using established charts and this relationship.The calculated results are consistent with the results of long period dynamic monitoring and logging interpretation in the study area and can provide a scientific basis for monitoring production performance and hierarchical management of reservoirs.The study provides a new geochemical method for calculation of the contributions of single layers in heavy oil commingled wells when conventional fluid production profile logging is not suitable.
基金This research was funded by grants from the Natural Science Foundation in Hubei(2018CFB349)the National Natural Sciences Foundation of China(41672155,61733016)Open Research Fund Program of Key Laboratory of Tectonics and Petroleum Resources Ministry of Education(No.TPR-2018-10).
文摘Gas drainage is carried out based on output from each coal bed throughout commingling production of coalbed methane(CBM).A reasonable drainage process should therefore initially guarantee main coal bed production and then enhance gas output from other beds.Permanent damage can result if this is not the case,especially with regard to fracture development in the main gas-producing coal bed and can greatly reduce single well output.Current theoretical models and measuring devices are inapplicable to commingled CBM drainage,however,and so large errors in predictive models cannot always be avoided.The most effective currently available method involves directly measuring gas output from each coal bed as well as determining the dominant gas-producing unit.A dynamic evaluation technique for gas output from each coal bed during commingling CBM production is therefore proposed in this study.This technique comprises a downhole measurement system combined with a theoretical calculation model.Gas output parameters(i.e.,gas-phase flow rate,temperature,pressure)are measured in this approach via a downhole measurement system;substituting these parameters into a deduced theoretical calculation model then means that gas output from each seam can be calculated to determine the main gas-producing unit.Trends in gas output from a single well or each seam can therefore be predicted.The laboratory and field test results presented here demonstrate that calculation errors in CBM outputs can be controlled within a margin of 15%and therefore conform with field use requirements.
基金Supported by the China National Science and Technology Major Project(2016ZX05044-002)the National Natural Science Foundation of China(41772155)the Fundamental Research Funds for the Central Universities of China(No.2015XKZD07)
文摘Based on the productivity equation of coalbed methane(CBM) wells, three indexes, main production layer optimization index, main production layer expansion index and capacity contribution index are proposed, with which the three-step optimization method of production-layer combination is established. In selecting main production layer, the coal seam thickness, CBM content, coal seam permeability, coal seam reservoir pressure and coal structure are considered comprehensively to evaluate the potential of the production layer. In selecting expansion of the main production layer combination, on the premise of ensuring full and slow desorption of the main production layer and non-exposure of the main production layer out of liquid surface, the degree of mutual interference between the main and non-main production layers is comprehensively evaluated by coupling the critical desorption pressure, layer spacing and reservoir pressure gradient difference. In optimizing production layer combination, the main concern is the economic efficiency of the combined layers. Only when the contribution coefficient of the main production layer is greater than 30% and the contribution index of the other production layers is more than 10%, the economic benefit of a CBM well after being put into production can be ensured. Based on the comparative analysis of the development effect of the development test wells in Songhe of Guizhou province, it is proved that the "three-step method" for the optimization of production-layer combination is scientific and practical, and can be used to design the multi-layer commingling scheme of coalbed methane.
文摘Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum technique, has been established. The standard plate was drawn using the extinction coefficient E of sample oils formulated artificially as y-axis and the wavelength as x-axis. The curve resulting from the UV analysis of sample oils in the commingled well was inserted into the standard plate and compared. The proportion of each single zone in the commingled producing well was identical with the proportion of the curve which is closest to the curve of sample oils formulated artificially. In the well QHD32-6-3 field, taking well A22 for example and using this method, the production contribution of a single zone was calculated. The result showed that the Nm4 zone is a major "contributor", the proportion of the Nm4 zone is 70%, and that of the Nm1 zone is 30%. The ultraviolet spectrum technique provided a new reservoir geochemical technique of monitoring production contribution, especially for biodegraded heavy oil, but it has some limitation, just depending on the GC fingerprint technique.