期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Continuous Separation of Multiple Size Microparticles using Alternating Current Dielectrophoresis in Microfluidic Device with Acupuncture Needle Electrodes 被引量:3
1
作者 TAO Ye REN Yukun +1 位作者 YAN Hui JIANG Hongyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期325-331,共7页
The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic... The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(n DEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the n DEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems. 展开更多
关键词 continuous separation of multiple size particles dielectrophoresis acupuncture needle electrodes microfluidic
下载PDF
Investigation of Ga_(2)O_(3)/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
2
作者 许敦洲 金鹏 +3 位作者 徐鹏飞 冯梦阳 吴巨 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期716-723,共8页
A Ga_(2)O_(3)/diamond separate absorption and multiplication avalanche photodiode(SAM-APD)with mesa structure has been proposed and simulated.The simulation is based on an optimized Ga_(2)O_(3)/diamond heterostructure... A Ga_(2)O_(3)/diamond separate absorption and multiplication avalanche photodiode(SAM-APD)with mesa structure has been proposed and simulated.The simulation is based on an optimized Ga_(2)O_(3)/diamond heterostructure TCAD physical model,which is revised by repeated comparison with the experimental data from the literature.Since both Ga_(2)O_(3)and diamond are ultra-wide bandgap semiconductor materials,the Ga_(2)O_(3)/diamond SAM-APD shows good solar-blind detection ability,and the corresponding cutoff wavelength is about 263 nm.The doping distribution and the electric field distribution of the SAM-APD are discussed,and the simulation results show that the gain of the designed device can reach 5×10^(4)and the peak responsivity can reach a value as high as 78 A/W. 展开更多
关键词 Ga_(2)O_(3) DIAMOND separate absorption and multiplication avalanche photodiode(SAM-APD) solar-blind detector
下载PDF
High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions
3
作者 汤寅 蔡青 +5 位作者 杨莲红 董可秀 陈敦军 陆海 张荣 郑有炓 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第1期137-140,共4页
It is well known that -nitride semiconductors can generate the magnitude of MV/cm polarization electric field which is comparable with their ionization electric fields. To take full advantage of the polarization elect... It is well known that -nitride semiconductors can generate the magnitude of MV/cm polarization electric field which is comparable with their ionization electric fields. To take full advantage of the polarization electric field, we design an N-face AlGaN solar-blind avalanche photodiode (APD) with an Al<sub>0.45</sub>Ga<sub>0.55</sub>N/Al<sub>0.3</sub>Ga<sub>0.7</sub>N heterostructure as separate absorption and multiplication (SAM) regions. The simulation results show that the N-face APDs are more beneficial to improving the avalanche gain and reducing the avalanche breakdown voltage compared with the Ga-face APDs due to the effect of the polarization electric field. Furthermore, the Al<sub>0.45</sub>Ga<sub>0.55</sub>N/Al<sub>0.3</sub>Ga<sub>0.7</sub>N heterostructure SAM regions used in APDs instead of homogeneous Al<sub>0.45</sub>Ga<sub>0.55</sub>N SAM structure can increase significantly avalanche gain because of the increased hole ionization coefficient by using the relatively low Al-content AlGaN in the multiplication region. Meanwhile, a quarter-wave AlGaN/AlN distributed Bragg reflector structure at the bottom of the device is designed to remain a solar-blind characteristic of the heterostructure SAM-APDs. 展开更多
关键词 ALGAN APD High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions
下载PDF
Phase separations in graded-indium content InGaN/GaN multiple quantum wells and its function to high quantum efficiency
4
作者 郭洪英 孙元平 +4 位作者 Yong-Hoon Cho Eun-Kyung Suh Hai-Joon Lee Rak-Jun Choi Yoon-Bong Hahn 《Journal of Semiconductors》 EI CAS CSCD 2012年第5期13-16,共4页
Phase separations have been studied for graded-indium content In_xGa_(1-x)N/GaN multiple quantum wells(MQWs) with different indium contents by means of photoluminescence(PL),cathodeluminescence(CL) and time-re... Phase separations have been studied for graded-indium content In_xGa_(1-x)N/GaN multiple quantum wells(MQWs) with different indium contents by means of photoluminescence(PL),cathodeluminescence(CL) and time-resolved PL(TRPL) techniques.Besides the main emission peaks,all samples show another 2 peaks at the high and low energy parts of the main peaks in PL when excited at 10 K.CL images show a clear contrast for 3 samples,which indicates an increasing phase separation with increasing indium content.TRPL spectra at 15 K of the main emissions show an increasing delay of rising time with indium content,which means a carrier transferring from low indium content structures to high indium content structures. 展开更多
关键词 carrier transfer phase separation graded-indium content multiple quantum wells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部