期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Determination of the natural frequencies of axially moving beams by the method of multiple scales 被引量:3
1
作者 杨晓东 陈立群 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期251-254,共4页
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot... The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small. 展开更多
关键词 the method of multiple scales natural frequency axially moving beam
下载PDF
Free vibration of vibrating device coupling two pendulums using multiple time scales method
2
作者 李珺 刘初升 +1 位作者 彭利平 王宏 《Journal of Central South University》 SCIE EI CAS 2013年第8期2134-2141,共8页
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ... A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition. 展开更多
关键词 free vibration coupling pendulums multiple time scales method nonlinear characteristic
下载PDF
APPLICATION OF THE MODIFIED METHOD OF MULTIPLE SCALES TO THE BENDING PROBLEMS FOR CIRCULAR THIN PLATE AT VERY LARGE DEFLECTION AND THE ASYMPTOTICS OF SOLUTIONS(Ⅱ)
3
作者 江福汝 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第4期34-39,共6页
This paper is a continuation of part (Ⅰ), on the asymptotics behaviors of the series solutions investigated in (Ⅰ). The remainder terms of the series solutions are estimated by the maximum norm.
关键词 large deflection modified method of multiple scales asymptotic behaviors
下载PDF
THE METHOD OF MULTIPLE SCALES APPLIED TO THE NONLINEAR STABILITY PROBLEM OF A TRUNCATED SHALLOW SPHERICAL SHELL OF VARIABLE THICKNESS WITH THE LARGE GEOMETRICAL PARAMETER
4
作者 KANG Sheng-liang(康盛亮) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第10期1198-1209,共12页
Using the modified method of multiple scales, the nonlinear stability of a truncated shallow spherical shell of variable thickness with a nondeformable rigid body at the center under compound loads is investigated. Wh... Using the modified method of multiple scales, the nonlinear stability of a truncated shallow spherical shell of variable thickness with a nondeformable rigid body at the center under compound loads is investigated. When the geometrical parameter k is larger, the uniformly valid asymptotic solutions of this problem are obtained and the remainder terms are estimated. 展开更多
关键词 shallow shell of variable thickness nonlinear stability modified method of multiple scales
下载PDF
APPLICATION OF THE MODIFIED METHOD OF MULTIPLE SCALES TO THE BENDING PROBLEMS FOR CIRCULAR THIN PLATE AT VERY LARGE DEFLECTION ANDTHE ASYMPTOTICS OF SOLUTIONS (Ⅰ)
5
作者 江福汝 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第10期937-950,共14页
In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions a... In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions are constructed, the boundary layer effects are analysed and their asymptotics are proved. 展开更多
关键词 circular plate large deflection boundary layer effect asymptotics modified method of multiple scales
下载PDF
COMPUTER COMPUTATION OF THE METHOD OF MULTIPLE SCALES-DIRICHLET PROBLEM FOR A CLASS OF SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS
6
作者 谢腊兵 江福汝 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第11期1264-1272,共9页
The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . T... The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales . 展开更多
关键词 system of nonlinear differential equation boundary value problem method of boundary layer with multiple scale computer algebra asymptotic solution
下载PDF
Towards a Unified Single Analysis Framework Embedded with Multiple Spatial and Time Discretized Methods for Linear Structural Dynamics
7
作者 David Tae Kumar K.Tamma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期843-885,共43页
We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia... We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples. 展开更多
关键词 Time integration structural dynamics multiple scale and multiple methods ordinary differential equations differential algebraic equations
下载PDF
Multiple scales method for analyzing a forced damped rotational pendulum oscillatorwithgallows
8
作者 Haifa A Alyousef Alvaro H Salas +1 位作者 B M Alotaibi S A El-Tantawy 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第5期58-67,共10页
This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of... This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations. 展开更多
关键词 rotational pendulum system multiple scales method approximate solution damped oscillations forced pendulum with gallows he-multiple scales method
原文传递
Nonlinear wave dispersion in monoatomic chains with lumped and distributed masses:discrete and continuum models
9
作者 E.GHAVANLOO S.EL-BORGI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期633-648,共16页
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr... The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude. 展开更多
关键词 nonlinear mass-spring chain discrete model continuum model LindstedtPoincare method(LPM) method of multiple scales(MMS) DISPERSION phase velocity
下载PDF
A MODIFIED METHOD OF AVERAGING FOR SOLVING A CLASS OFNONLINEAR EQUATIONS
10
作者 张宝善 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第12期1177-1186,共10页
In this paper, we studied a method of averaging which decide a uniform validsolution for nonlinear equationand got the ,modified forms for KB ,method (Krylov-Bogoliubov method)and KBMmethod (Krytov-Bogoliubov-Mitropol... In this paper, we studied a method of averaging which decide a uniform validsolution for nonlinear equationand got the ,modified forms for KB ,method (Krylov-Bogoliubov method)and KBMmethod (Krytov-Bogoliubov-Mitropolski method). Through the comparison of two examples with the method of multiple scales it can be shown that the modifies averaging methods here are uniformly valid and thereby the applied area of the methodof averaging are extended. 展开更多
关键词 KB method KBM method method of multiple scales. uniformlyvalid solution
下载PDF
Analytical approximations to a generalized forced damped complex Duffing oscillator:multiple scales method and KBM approach 被引量:1
11
作者 Weaam Alhejaili Alvaro H Salas S A El-Tantawy 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第2期18-27,共10页
In this investigation,some different approaches are implemented for analyzing a generalized forced damped complex Duffing oscillator,including the hybrid homotopy perturbation method(H-HPM),which is sometimes called t... In this investigation,some different approaches are implemented for analyzing a generalized forced damped complex Duffing oscillator,including the hybrid homotopy perturbation method(H-HPM),which is sometimes called the Krylov-Bogoliubov-Mitropolsky(KBM)method and the multiple scales method(MSM).All mentioned methods are applied to obtain some accurate and stable approximations to the proposed problem without decoupling the original problem.All obtained approximations are discussed graphically using different numerical values to the relevant parameters.Moreover,all obtained approximate solutions are compared with the 4thorder Runge-Kutta(RK4)numerical approximation.The maximum residual distance error(MRDE)is also estimated,in order to verify the high accuracy of the obtained analytic approximations. 展开更多
关键词 complex Duffing oscillators forced damped complex oscillator multiple scales method KBM method
原文传递
Nonlinear Resonance of the Rotating Circular Plate under Static Loads in Magnetic Field 被引量:10
12
作者 HU Yuda WANG Tong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1277-1284,共8页
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating ci... The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering. 展开更多
关键词 circular plate main resonance magnetic filed static load modified multiple scale method
下载PDF
DYNAMIC STABILITY OF A BEAM-MODEL VISCOELASTIC PIPE FOR CONVEYING PULSATIVE FLUID 被引量:11
13
作者 Xiaodong Yang Tianzhi Yang Jiduo Jin 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期350-356,共7页
The dynamic stability in transverse vibration of a viscoelastic pipe for conveying puisative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-... The dynamic stability in transverse vibration of a viscoelastic pipe for conveying puisative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-type viscoelastic constitutive relation. The axial fluid speed is characterized as simple harmonic variation about a constant mean speed. The method of multiple scales is applied directly to the governing partial differential equation without discretization when the viscoelastic damping and the periodical excitation are considered small. The stability conditions are presented in the case of subharmonic and combination resonance. Numerical results show the effect of viscosity and mass ratio on instability regions. 展开更多
关键词 parametric resonance fluid conveying pipes multiple scale method
下载PDF
Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance 被引量:5
14
作者 Yunfei LIU Zhaoye QINT Fulei CHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期805-818,共14页
In this article, the nonlinear dynamic responses of sandwich functionally graded(FG) porous cylindrical shell embedded in elastic media are investigated. The shell studied here consists of three layers, of which the o... In this article, the nonlinear dynamic responses of sandwich functionally graded(FG) porous cylindrical shell embedded in elastic media are investigated. The shell studied here consists of three layers, of which the outer and inner skins are made of solid metal, while the core is FG porous metal foam. Partial differential equations are derived by utilizing the improved Donnell's nonlinear shell theory and Hamilton's principle. Afterwards, the Galerkin method is used to transform the governing equations into nonlinear ordinary differential equations, and an approximate analytical solution is obtained by using the multiple scales method. The effects of various system parameters,specifically, the radial load, core thickness, foam type, foam coefficient, structure damping,and Winkler-Pasternak foundation parameters on nonlinear internal resonance of the sandwich FG porous thin shells are evaluated. 展开更多
关键词 nonlinear internal resonance sandwich functionally graded(FG)porous shell improved Donnell's nonlinear shell theory multiple scales method Galerkin method
下载PDF
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS 被引量:17
15
作者 Yang Xiaodong Chen Li-Qun 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第4期365-373,共9页
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is... The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode. 展开更多
关键词 axially moving beam VISCOELASTICITY non-linear forced vibration method of multiple scales
下载PDF
Magneto-elastic combination resonances analysis of current-conducting thin plate 被引量:2
16
作者 胡宇达 李晶 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1053-1066,共14页
Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electromagnetic forces are derived. In addition, the magneto-elasti... Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electromagnetic forces are derived. In addition, the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant transverse magnetic filed are studied. Using the Galerkin method, the corresponding nonlinear vibration differential equations are derived. The amplitude frequency response equation of the system in steady motion is obtained with the multiple scales method. The excitation condition of combination resonances is analyzed. Based on the Lyapunov stability theory, stabilities of steady solutions are analyzed, and critical conditions of stability are also obtained. By numerical calculation, curves of resonance-amplitudes changes with detuning parameters, excitation amplitudes and magnetic intensity in the first and the second order modality are obtained. Time history response plots, phase charts, the Poincare mapping charts and spectrum plots of vibrations are obtained. The effect of electro-magnetic and mechanical parameters for the stabilities of solutions and the bifurcation are further analyzed, Some complex dynamic performances such as perioddoubling motion and quasi-period motion are discussed. 展开更多
关键词 MAGNETO-ELASTIC current-conducting thin plate combination resonance STABILITY multiple scales method
下载PDF
Nonlinear energy harvesting with dual resonant zones based on rotating system 被引量:2
17
作者 Dan WANG Zhifeng HAO +1 位作者 Fangqi CHEN Yushu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期275-290,共16页
An electromagnetic nonlinear energy harvester(NEH)based on a rotating system is proposed,of which the host system rotates at a constant speed and vibrates harmonically in the vertical direction.This kind of device exh... An electromagnetic nonlinear energy harvester(NEH)based on a rotating system is proposed,of which the host system rotates at a constant speed and vibrates harmonically in the vertical direction.This kind of device exhibits several resonant phenomena due to the combinations of the rotating and the vibration frequencies of the host system as well as the cubic nonlinearity of the NEH.The governing equation of motion for the NEH is derived,and the dynamic responses and output power are investigated with the multiple scale method under the 1:1 primary and 2:1 superharmonic resonant conditions.The effects of system parameters including the nondimensional external frequency,the rotating speed,and the nonlinear stiffness on the responses of free vibration for the system are studied.The results of the primary resonance show that the responses exhibit not only the resonant characteristics but also the nonlinear dynamic characteristics such as the saddle-node(SN)bifurcation.The coexistence of multiple solutions and the varying trends of responses are verified with the direct numerical simulation.Moreover,the effects of system parameters on the average output power are investigated.The results of the analyses on the two resonant conditions indicate that the large power can be harvested in two resonant frequency bands.The effect of resonance on the output power is dominant for the 2:1 superharmonic resonance.Moreover,the results also show that introducing the nonlinearity can increase the value of the output power in large frequency bands and induce the occurence of new frequency bands to harvest the large power.The efficiency of the harvested power could be improved by the combined effects of the resonance as well as the nonlinearity of the NEH device.Suitable parameter conditions could help optimize the power harvesting in design. 展开更多
关键词 nonlinear energy harvester(NEH) RESONANCE output power multiple scale method rotating system
下载PDF
Position and Velocity Time Delay for Suppression Vibrations of a Hybrid Rayleigh-Van der Pol-Duffing Oscillator 被引量:3
18
作者 Y.A.Amer A.T.El-Sayed M.N.Abd El-Salam 《Sound & Vibration》 EI 2020年第3期149-161,共13页
In this paper,we used time delay feedback to minimize the vibrations of a hybrid Rayleigh–van der Pol–Duffing oscillator.This system is a one-degree-offreedom containing the cubic and fifth nonlinear terms and an ex... In this paper,we used time delay feedback to minimize the vibrations of a hybrid Rayleigh–van der Pol–Duffing oscillator.This system is a one-degree-offreedom containing the cubic and fifth nonlinear terms and an external force.We applied the multiple scales method to get the solution from first approximation.Graphically and numerically,we studied the system before and after adding time delay feedback at the primary resonance case(ffi!).We used MATLAB program to simulate the efficacy of different parameters and the time delay on the main system. 展开更多
关键词 Position time delay feedback velocity time delay feedback multiple scales method resonance cases
下载PDF
PRINCIPAL RESONANCE IN TRANSVERSE NONLINEAR PARAMETRIC VIBRATION OF AN AXIALLY ACCELERATING VISCOELASTIC STRING 被引量:4
19
作者 陈立群 Jean W.ZU 吴俊 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期307-316,共10页
To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string,the method of multiple scales is applied directly to the nonlinear partial differentia... To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string,the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string.To derive the governing equation,Newton's second law,Lagrangean strain,and Kelvin's model are respectively used to account the dynamical relation,geometric nonlinearity and the viscoelasticity of the string material. Based on the solvability condition of eliminating the secular terms,closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance.The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance.Some numerical examples are presented to show the effects of the mean transport speed,the amplitude and the frequency of speed variation. 展开更多
关键词 principal parametric resonance axially accelerating string VISCOELASTICITY method of multiple scales stability
下载PDF
Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams 被引量:13
20
作者 Hu Ding Li-Qun Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期426-437,共12页
Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially unifor... Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same,but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales. 展开更多
关键词 Axially moving beam. Nonlinearity . Mate-rial time derivative . method of multiple scales. Differentialquadrature method
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部