层析是电离层三维结构反演的重要技术.增加约束可缓解层析模型的病态问题.然而,迭代层析中,大量无射线穿过的网格易对施加的约束产生与真实意图相违背的约束结果(称负面约束).针对该问题,提出了一种参数平滑的迭代层析方法(iterative to...层析是电离层三维结构反演的重要技术.增加约束可缓解层析模型的病态问题.然而,迭代层析中,大量无射线穿过的网格易对施加的约束产生与真实意图相违背的约束结果(称负面约束).针对该问题,提出了一种参数平滑的迭代层析方法(iterative tomography method via parameters smoothing, ITPS).每次迭代中,先用Chapman函数及最小二乘法拟合及改正每一垂直剖面,获取关于Chapman函数参数的二维图像,然后用移动窗口法平滑各参数图像并以此改正各网格的电子密度.实验表明:ITPS方法可一定程度上减少负面约束并抑制层像的扰动.相对于MART和CMART算法,ITPS方法在垂直剖面、F2层临界频率(f_(o)F_(2))、F_(2)层峰值高度(h_(m)F_(2))、斜电子总含量(Slant Total Electron Content, STEC)及h_(m)F_(2)以上电子密度等方面均具有更佳的表现.相对于精度较高的CMART算法,ITPS方法在f_(o)F_(2)与h_(m)F_(2)的平均优化率分别为7.49%及6.60%,STEC的平均优化率为5.19%,h_(m)F_(2)以上电子密度的平均优化率为11.41%.展开更多
As an inverse problem, particle reconstruction in tomographic particle image velocimetry attempts to solve a large-scale underdetermined linear system using an optimization technique. The most popular approach, the mu...As an inverse problem, particle reconstruction in tomographic particle image velocimetry attempts to solve a large-scale underdetermined linear system using an optimization technique. The most popular approach, the multiplicative algebraic reconstruction technique(MART), uses entropy as an objective function in the optimization. All available MART-based methods are focused on improving the efficiency and accuracy of particle reconstruction. However, those methods do not perform very well on dealing with ghost particles in highly seeded measurements. In this report, a new technique called dual-basis pursuit(DBP), which is based on the basis pursuit technique, is proposed for tomographic particle reconstruction. A template basis is introduced as a priori knowledge of a particle intensity distribution combined with a correcting basis to enable a full span of the solution space of the underdetermined linear system. A numerical assessment test with 2D synthetic images indicated that the DBP technique is superior to MART method, can completely recover a particle field when the number of particles per pixel(ppp) is less than 0.15, and can maintain a quality factor Q of above 0.8 for ppp up to 0.30. Unfortunately, the DBP method is difficult to utilize in 3D applications due to the cost of its excessive memory usage. Therefore, a dual-basis MART was designed that performed better than the traditional MART and can potentially be utilized for 3D applications.展开更多
文摘层析是电离层三维结构反演的重要技术.增加约束可缓解层析模型的病态问题.然而,迭代层析中,大量无射线穿过的网格易对施加的约束产生与真实意图相违背的约束结果(称负面约束).针对该问题,提出了一种参数平滑的迭代层析方法(iterative tomography method via parameters smoothing, ITPS).每次迭代中,先用Chapman函数及最小二乘法拟合及改正每一垂直剖面,获取关于Chapman函数参数的二维图像,然后用移动窗口法平滑各参数图像并以此改正各网格的电子密度.实验表明:ITPS方法可一定程度上减少负面约束并抑制层像的扰动.相对于MART和CMART算法,ITPS方法在垂直剖面、F2层临界频率(f_(o)F_(2))、F_(2)层峰值高度(h_(m)F_(2))、斜电子总含量(Slant Total Electron Content, STEC)及h_(m)F_(2)以上电子密度等方面均具有更佳的表现.相对于精度较高的CMART算法,ITPS方法在f_(o)F_(2)与h_(m)F_(2)的平均优化率分别为7.49%及6.60%,STEC的平均优化率为5.19%,h_(m)F_(2)以上电子密度的平均优化率为11.41%.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472030,11327202 and 11490552)
文摘As an inverse problem, particle reconstruction in tomographic particle image velocimetry attempts to solve a large-scale underdetermined linear system using an optimization technique. The most popular approach, the multiplicative algebraic reconstruction technique(MART), uses entropy as an objective function in the optimization. All available MART-based methods are focused on improving the efficiency and accuracy of particle reconstruction. However, those methods do not perform very well on dealing with ghost particles in highly seeded measurements. In this report, a new technique called dual-basis pursuit(DBP), which is based on the basis pursuit technique, is proposed for tomographic particle reconstruction. A template basis is introduced as a priori knowledge of a particle intensity distribution combined with a correcting basis to enable a full span of the solution space of the underdetermined linear system. A numerical assessment test with 2D synthetic images indicated that the DBP technique is superior to MART method, can completely recover a particle field when the number of particles per pixel(ppp) is less than 0.15, and can maintain a quality factor Q of above 0.8 for ppp up to 0.30. Unfortunately, the DBP method is difficult to utilize in 3D applications due to the cost of its excessive memory usage. Therefore, a dual-basis MART was designed that performed better than the traditional MART and can potentially be utilized for 3D applications.