Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a v...Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a variety of locations throughout the brain; therefore, this disease is never the same in two patients making it very hard to predict disease progression. A modeling approach which combines clinical, biological and imaging measures to help treat and fight this disorder is needed. In this paper, I will outline MS as a very heterogeneous disorder, review some potential solutions from the literature, demonstrate the need for a biomarker and will discuss how computational modeling combined with biological, clinical and imaging data can help link disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
In a prior practice and policy article published in Healthcare Science,we introduced the deployed application of an artificial intelligence(AI)model to predict longer‐term inpatient readmissions to guide community ca...In a prior practice and policy article published in Healthcare Science,we introduced the deployed application of an artificial intelligence(AI)model to predict longer‐term inpatient readmissions to guide community care interventions for patients with complex conditions in the context of Singapore's Hospital to Home(H2H)program that has been operating since 2017.In this follow on practice and policy article,we further elaborate on Singapore's H2H program and care model,and its supporting AI model for multiple readmission prediction,in the following ways:(1)by providing updates on the AI and supporting information systems,(2)by reporting on customer engagement and related service delivery outcomes including staff‐related time savings and patient benefits in terms of bed days saved,(3)by sharing lessons learned with respect to(i)analytics challenges encountered due to the high degree of heterogeneity and resulting variability of the data set associated with the population of program participants,(ii)balancing competing needs for simpler and stable predictive models versus continuing to further enhance models and add yet more predictive variables,and(iii)the complications of continuing to make model changes when the AI part of the system is highly interlinked with supporting clinical information systems,(4)by highlighting how this H2H effort supported broader Covid‐19 response efforts across Singapore's public healthcare system,and finally(5)by commenting on how the experiences and related capabilities acquired from running this H2H program and related community care model and supporting AI prediction model are expected to contribute to the next wave of Singapore's public healthcare efforts from 2023 onwards.For the convenience of the reader,some content that introduces the H2H program and the multiple readmissions AI prediction model that previously appeared in the prior Healthcare Science publication is repeated at the beginning of this article.展开更多
It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer cha...It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer chain and the sequence distribution of constituent chains in entanglement spacings. A unified quantity for the three combing factors is the average constrained dimensional number of constituent chains in the long entanglement spacings (v). A new relation of v to the primary molecular weight and the number of testing polymers were derived from the multiple entanglement and reptation model, and a new method for determining v was proposed. The dependences of linear viscoelastic functions on the primary molecular weight and its distribution were derived by the statistical method. When Mn=6Me to 18 Me, the values of (v) can range from 3.33 to 3.70. Their values are in a good agreement with the experiment data, and it can slightjy vary with the different species of polymers and the different ranges of molecular weight of polymers展开更多
文摘Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a variety of locations throughout the brain; therefore, this disease is never the same in two patients making it very hard to predict disease progression. A modeling approach which combines clinical, biological and imaging measures to help treat and fight this disorder is needed. In this paper, I will outline MS as a very heterogeneous disorder, review some potential solutions from the literature, demonstrate the need for a biomarker and will discuss how computational modeling combined with biological, clinical and imaging data can help link disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
文摘In a prior practice and policy article published in Healthcare Science,we introduced the deployed application of an artificial intelligence(AI)model to predict longer‐term inpatient readmissions to guide community care interventions for patients with complex conditions in the context of Singapore's Hospital to Home(H2H)program that has been operating since 2017.In this follow on practice and policy article,we further elaborate on Singapore's H2H program and care model,and its supporting AI model for multiple readmission prediction,in the following ways:(1)by providing updates on the AI and supporting information systems,(2)by reporting on customer engagement and related service delivery outcomes including staff‐related time savings and patient benefits in terms of bed days saved,(3)by sharing lessons learned with respect to(i)analytics challenges encountered due to the high degree of heterogeneity and resulting variability of the data set associated with the population of program participants,(ii)balancing competing needs for simpler and stable predictive models versus continuing to further enhance models and add yet more predictive variables,and(iii)the complications of continuing to make model changes when the AI part of the system is highly interlinked with supporting clinical information systems,(4)by highlighting how this H2H effort supported broader Covid‐19 response efforts across Singapore's public healthcare system,and finally(5)by commenting on how the experiences and related capabilities acquired from running this H2H program and related community care model and supporting AI prediction model are expected to contribute to the next wave of Singapore's public healthcare efforts from 2023 onwards.For the convenience of the reader,some content that introduces the H2H program and the multiple readmissions AI prediction model that previously appeared in the prior Healthcare Science publication is repeated at the beginning of this article.
文摘It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer chain and the sequence distribution of constituent chains in entanglement spacings. A unified quantity for the three combing factors is the average constrained dimensional number of constituent chains in the long entanglement spacings (v). A new relation of v to the primary molecular weight and the number of testing polymers were derived from the multiple entanglement and reptation model, and a new method for determining v was proposed. The dependences of linear viscoelastic functions on the primary molecular weight and its distribution were derived by the statistical method. When Mn=6Me to 18 Me, the values of (v) can range from 3.33 to 3.70. Their values are in a good agreement with the experiment data, and it can slightjy vary with the different species of polymers and the different ranges of molecular weight of polymers