期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop Scheduling with Multiprocessor Tasks 被引量:23
1
作者 Enda Jiang Ling Wang Jingjing Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第5期646-663,共18页
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons... This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D. 展开更多
关键词 distributed hybrid flow shop multiprocessor tasks energy-aware scheduling multi-objective optimization DECOMPOSITION dynamic adjustment strategy
原文传递
An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling 被引量:2
2
作者 Hamid Reza BOVEIRI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期498-510,共13页
Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are bas... Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are based on the so-called list scheduling technique. The basic idea behind list scheduling is to prepare a sequence of nodes in the form of a list for scheduling by assigning them some priority measurements, and then repeatedly removing the node with the highest priority from the list and allocating it to the processor providing the earliest start time (EST). Therefore, it can be inferred that the makespans obtained are dominated by two major factors: (1) which order of tasks should be selected (sequence subproblem); (2) how the selected order should be assigned to the processors (assignment subproblem). A number of good approaches for overcoming the task sequence dilemma have been proposed in the literature, while the task assignment problem has not been studied much. The results of this study prove that assigning tasks to the processors using the traditional EST method is not optimum; in addition, a novel approach based on the ant colony optimization algorithm is introduced, which can find far better solutions. 展开更多
关键词 Ant colony optimization List scheduling multiprocessor task graph scheduling Parallel and distributed systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部