This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons...This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.展开更多
Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are bas...Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are based on the so-called list scheduling technique. The basic idea behind list scheduling is to prepare a sequence of nodes in the form of a list for scheduling by assigning them some priority measurements, and then repeatedly removing the node with the highest priority from the list and allocating it to the processor providing the earliest start time (EST). Therefore, it can be inferred that the makespans obtained are dominated by two major factors: (1) which order of tasks should be selected (sequence subproblem); (2) how the selected order should be assigned to the processors (assignment subproblem). A number of good approaches for overcoming the task sequence dilemma have been proposed in the literature, while the task assignment problem has not been studied much. The results of this study prove that assigning tasks to the processors using the traditional EST method is not optimum; in addition, a novel approach based on the ant colony optimization algorithm is introduced, which can find far better solutions.展开更多
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.61525304)the National Natural Science Foundation of China(No.61873328)。
文摘This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.
基金Project supported by Sama Technical and Vocational Training College,Islamic Azad University,Shoushtar Branch,Shoushtar,Iran
文摘Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are based on the so-called list scheduling technique. The basic idea behind list scheduling is to prepare a sequence of nodes in the form of a list for scheduling by assigning them some priority measurements, and then repeatedly removing the node with the highest priority from the list and allocating it to the processor providing the earliest start time (EST). Therefore, it can be inferred that the makespans obtained are dominated by two major factors: (1) which order of tasks should be selected (sequence subproblem); (2) how the selected order should be assigned to the processors (assignment subproblem). A number of good approaches for overcoming the task sequence dilemma have been proposed in the literature, while the task assignment problem has not been studied much. The results of this study prove that assigning tasks to the processors using the traditional EST method is not optimum; in addition, a novel approach based on the ant colony optimization algorithm is introduced, which can find far better solutions.