期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media 被引量:1
1
作者 贺英 韩波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1495-1504,共10页
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi... In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media. 展开更多
关键词 porous media wavelet multiresolution method numerical simulation fluid-saturated finite-difference method
下载PDF
Numerical Approximation of Oscillatory Solutions of Hyperbolic-Elliptic Systems of Conservation Laws by Multiresolution Schemes
2
作者 Stefan Berres Raimund Burger Alice Kozakevicius 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第5期581-614,共34页
The generic structure of solutions of initial value problems of hyperbolic-elliptic systems,also called mixed systems,of conservation laws is not yet fully understood.One reason for the absence of a core well-posednes... The generic structure of solutions of initial value problems of hyperbolic-elliptic systems,also called mixed systems,of conservation laws is not yet fully understood.One reason for the absence of a core well-posedness theory for these equations is the sensitivity of their solutions to the structure of a parabolic regularization when attempting to single out an admissible solution by the vanishing viscosity approach.There is,however,theoretical and numerical evidence for the appearance of solutions that exhibit persistent oscillations,so-called oscillatory waves,which are(in general,measure-valued)solutions that emerge from Riemann data or slightly perturbed constant data chosen from the interior of the elliptic region.To capture these solutions,usually a fine computational grid is required.In this work,a version of the multiresolution method applied to a WENO scheme for systems of conservation laws is proposed as a simulation tool for the efficient computation of solutions of oscillatory wave type.The hyperbolic-elliptic 2×2 systems of conservation laws considered are a prototype system for three-phase flow in porous media and a system modeling the separation of a heavy-buoyant bidisperse suspension.In the latter case,varying one scalar parameter produces elliptic regions of different shapes and numbers of points of tangency with the borders of the phase space,giving rise to different kinds of oscillation waves. 展开更多
关键词 Hyperbolic-elliptic system conservation law oscillation wave numerical simulation multiresolution method sedimentation model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部