This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a spe...To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a special form (e.g. the dissection form [11]). The main tool for deriving our methods is the diagonally compensated reduction (cf. [1]). The convergence of such methods is also discussed by using this tool. [WT5,5”HZ]展开更多
This paper proposes a class of parallel interval matrix multisplitting AOR methods far solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient ...This paper proposes a class of parallel interval matrix multisplitting AOR methods far solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient matrices are interval H-matrices.展开更多
The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived ...The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived if the subsystems are solving exactly.Firstly,in theis paper,we deal with an extension of the waveform relaxation algorithm by us ing multisplittin AOR method based on an overlapping block decomposition. We restricted our selves to equidistant timepoints and dealed with the case that an implicit integration method was used to solve the subsystems numerically in parallel. Then we have proved convergence of multi splitting AOR waveform relaxation algorithm on a fixed window containing a finite number of timepoints.展开更多
Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill whic...Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill which the iteration is executed asynchronously: Each processor calculate the solution of an individual nonlinear system belong to its nonlinear multisplitting and can update the global approximation residing in the shared memory at any time. A local convergence analysis of this model is presented. Finally, we give a uumerical example which shows a 'strange' property that speedup Sp > p and efficiency Ep > 1.展开更多
By further generalizing Frommer's results in the sense of nonlinear multisplitting, we build a class of nonlinear multisplitting AOR-type methods, which covers many rather practical nonlinear multisplitting relaxa...By further generalizing Frommer's results in the sense of nonlinear multisplitting, we build a class of nonlinear multisplitting AOR-type methods, which covers many rather practical nonlinear multisplitting relaxation methods such as multisplitting AOR-Newton method, multisplitting AOR-chord method and multisplitting AOR-Steffensen method, etc.. Furthermore,a general convergence theorem for the nonlinear multisplitting AOR-type methods and the local convergence for the multisplitting AOR-Newton method are discussed in detail.A lot of numerical tests show that our new methods are feasible and satisfactory.展开更多
In this paper,we present a modulus-based multisplitting iteration method based on multisplitting of the system matrix for a class of weakly nonlinear complementarity problem.And we prove the convergence of the method ...In this paper,we present a modulus-based multisplitting iteration method based on multisplitting of the system matrix for a class of weakly nonlinear complementarity problem.And we prove the convergence of the method when the system matrix is an H_(+)-matrix.Finally,we give two numerical examples.展开更多
Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?)...Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?) be regular and M=F-G be weak regular,where M andF are symmetric positive definite matrices.Then the resulting two-stage method corre-sponding to the diagonally compensated reduced splitting A=M-N and inner splitting M=F-G is convergent for any number μ≥1 of inner iterations.Furthermore,the展开更多
The convergence of the parallel matrix multisplitting relaxation methods presented by Wang (Linear Algebra and Its Applications 154/156 (1991) 473 486) is further investigated. The investigations show that these relax...The convergence of the parallel matrix multisplitting relaxation methods presented by Wang (Linear Algebra and Its Applications 154/156 (1991) 473 486) is further investigated. The investigations show that these relaxation methods really have considerably larger convergence domains.展开更多
Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not ...Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.展开更多
Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive d...Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties, are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.展开更多
Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting met...Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting method; Information on the convergence theories; Details on the parallel chaotic multisplitting relaxation methods.展开更多
A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrice...A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrices of the linear systems are monotone matrices and H-matrices, respectively.展开更多
In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric...In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.展开更多
For the large sparse systems of linear and nonlinear equations, a new class of generalized asynchronous parallel multisplitting iterative method is presented, and its convergence theory is established under suitable c...For the large sparse systems of linear and nonlinear equations, a new class of generalized asynchronous parallel multisplitting iterative method is presented, and its convergence theory is established under suitable conditions. This method not only unifies the discussions of various existing asynchronous multisplitting iterations, but also affords new algorithmic and theoretical results for the parallel solution of large sparse system of linear equations. Besides its generality, this method is also much more suitable for implementing on the MIMD multiprocessor systems.展开更多
In the sense of the nonlinear multisplitting and based on the principle of suffi-ciently using the delayed information, we propose models of asynchronous parallelaccelerated overrelaxation iteration methods for solvin...In the sense of the nonlinear multisplitting and based on the principle of suffi-ciently using the delayed information, we propose models of asynchronous parallelaccelerated overrelaxation iteration methods for solving large scale system of non-linear equations. Under proper conditions, we set up the local convergence theoriesof these new method models.展开更多
We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theore...We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.展开更多
Presents a study of the numerical behaviors of the relaxed asynchronous multisplitting methods for linear complementarity problems by solving typical problems from practical applications on a real multiprocessor syste...Presents a study of the numerical behaviors of the relaxed asynchronous multisplitting methods for linear complementarity problems by solving typical problems from practical applications on a real multiprocessor system. Description of the tested problems and computing environment used in the computations; Description of the asynchronous multisplitting unsymmetric accelerated overrelaxation method; Discussion of results.展开更多
A class of asynchronous matrix multi-splitting multi-parameter relaxation methods, including the asynchronous matrix multisplitting SAOR, SSOR and SGS methods as well. as the known asynchronous matrix multisplitting A...A class of asynchronous matrix multi-splitting multi-parameter relaxation methods, including the asynchronous matrix multisplitting SAOR, SSOR and SGS methods as well. as the known asynchronous matrix multisplitting AOR, SOR and GS methods, etc., is proposed for solving the large sparse systems of linear equations by making use of the principle of sufficiently using the delayed information. These new methods can greatly execute the parallel computational efficiency of the MIMD-systems, and are shown to be convergent when the coefficient matrices are H-matrices. Moreover, necessary and sufficient conditions ensuring the convergence of these methods are concluded for the case that the coefficient matrices are L-matrices.展开更多
文摘This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
文摘To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a special form (e.g. the dissection form [11]). The main tool for deriving our methods is the diagonally compensated reduction (cf. [1]). The convergence of such methods is also discussed by using this tool. [WT5,5”HZ]
文摘This paper proposes a class of parallel interval matrix multisplitting AOR methods far solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient matrices are interval H-matrices.
文摘The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived if the subsystems are solving exactly.Firstly,in theis paper,we deal with an extension of the waveform relaxation algorithm by us ing multisplittin AOR method based on an overlapping block decomposition. We restricted our selves to equidistant timepoints and dealed with the case that an implicit integration method was used to solve the subsystems numerically in parallel. Then we have proved convergence of multi splitting AOR waveform relaxation algorithm on a fixed window containing a finite number of timepoints.
文摘Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill which the iteration is executed asynchronously: Each processor calculate the solution of an individual nonlinear system belong to its nonlinear multisplitting and can update the global approximation residing in the shared memory at any time. A local convergence analysis of this model is presented. Finally, we give a uumerical example which shows a 'strange' property that speedup Sp > p and efficiency Ep > 1.
文摘By further generalizing Frommer's results in the sense of nonlinear multisplitting, we build a class of nonlinear multisplitting AOR-type methods, which covers many rather practical nonlinear multisplitting relaxation methods such as multisplitting AOR-Newton method, multisplitting AOR-chord method and multisplitting AOR-Steffensen method, etc.. Furthermore,a general convergence theorem for the nonlinear multisplitting AOR-type methods and the local convergence for the multisplitting AOR-Newton method are discussed in detail.A lot of numerical tests show that our new methods are feasible and satisfactory.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11771275)the Science and Technology Program of Shandong Universities(No.J16LI04).
文摘In this paper,we present a modulus-based multisplitting iteration method based on multisplitting of the system matrix for a class of weakly nonlinear complementarity problem.And we prove the convergence of the method when the system matrix is an H_(+)-matrix.Finally,we give two numerical examples.
文摘Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?) be regular and M=F-G be weak regular,where M andF are symmetric positive definite matrices.Then the resulting two-stage method corre-sponding to the diagonally compensated reduced splitting A=M-N and inner splitting M=F-G is convergent for any number μ≥1 of inner iterations.Furthermore,the
文摘The convergence of the parallel matrix multisplitting relaxation methods presented by Wang (Linear Algebra and Its Applications 154/156 (1991) 473 486) is further investigated. The investigations show that these relaxation methods really have considerably larger convergence domains.
文摘Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.
基金Subsidized by The Special Funds For Major State Basic Research Projects G1999032803.
文摘Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties, are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.
基金the National Natural Science Foundation of China (19601036) and Subsidized by the SpecialFunds for Major State Basic Research
文摘Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting method; Information on the convergence theories; Details on the parallel chaotic multisplitting relaxation methods.
文摘A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrices of the linear systems are monotone matrices and H-matrices, respectively.
文摘In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.
文摘For the large sparse systems of linear and nonlinear equations, a new class of generalized asynchronous parallel multisplitting iterative method is presented, and its convergence theory is established under suitable conditions. This method not only unifies the discussions of various existing asynchronous multisplitting iterations, but also affords new algorithmic and theoretical results for the parallel solution of large sparse system of linear equations. Besides its generality, this method is also much more suitable for implementing on the MIMD multiprocessor systems.
文摘In the sense of the nonlinear multisplitting and based on the principle of suffi-ciently using the delayed information, we propose models of asynchronous parallelaccelerated overrelaxation iteration methods for solving large scale system of non-linear equations. Under proper conditions, we set up the local convergence theoriesof these new method models.
基金The work was done in the state key laboratory of advanced design and manufacture for vehicle body of Hunan university973 national project of China granted 2004CB719402the National Natural Science Foundation of China(No.10371035)
文摘We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.
基金the Special Funds for Major State Basic Research Projects G1999032803Supported by the National Natural Science Foundation of China (19601036).
文摘Presents a study of the numerical behaviors of the relaxed asynchronous multisplitting methods for linear complementarity problems by solving typical problems from practical applications on a real multiprocessor system. Description of the tested problems and computing environment used in the computations; Description of the asynchronous multisplitting unsymmetric accelerated overrelaxation method; Discussion of results.
基金Project 19601036 supported by the National Natural Science Foundation of China.
文摘A class of asynchronous matrix multi-splitting multi-parameter relaxation methods, including the asynchronous matrix multisplitting SAOR, SSOR and SGS methods as well. as the known asynchronous matrix multisplitting AOR, SOR and GS methods, etc., is proposed for solving the large sparse systems of linear equations by making use of the principle of sufficiently using the delayed information. These new methods can greatly execute the parallel computational efficiency of the MIMD-systems, and are shown to be convergent when the coefficient matrices are H-matrices. Moreover, necessary and sufficient conditions ensuring the convergence of these methods are concluded for the case that the coefficient matrices are L-matrices.