Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill whic...Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill which the iteration is executed asynchronously: Each processor calculate the solution of an individual nonlinear system belong to its nonlinear multisplitting and can update the global approximation residing in the shared memory at any time. A local convergence analysis of this model is presented. Finally, we give a uumerical example which shows a 'strange' property that speedup Sp > p and efficiency Ep > 1.展开更多
In this paper,we present a modulus-based multisplitting iteration method based on multisplitting of the system matrix for a class of weakly nonlinear complementarity problem.And we prove the convergence of the method ...In this paper,we present a modulus-based multisplitting iteration method based on multisplitting of the system matrix for a class of weakly nonlinear complementarity problem.And we prove the convergence of the method when the system matrix is an H_(+)-matrix.Finally,we give two numerical examples.展开更多
This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
By further generalizing Frommer's results in the sense of nonlinear multisplitting, we build a class of nonlinear multisplitting AOR-type methods, which covers many rather practical nonlinear multisplitting relaxa...By further generalizing Frommer's results in the sense of nonlinear multisplitting, we build a class of nonlinear multisplitting AOR-type methods, which covers many rather practical nonlinear multisplitting relaxation methods such as multisplitting AOR-Newton method, multisplitting AOR-chord method and multisplitting AOR-Steffensen method, etc.. Furthermore,a general convergence theorem for the nonlinear multisplitting AOR-type methods and the local convergence for the multisplitting AOR-Newton method are discussed in detail.A lot of numerical tests show that our new methods are feasible and satisfactory.展开更多
In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric...In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.展开更多
We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theore...We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.展开更多
文摘Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill which the iteration is executed asynchronously: Each processor calculate the solution of an individual nonlinear system belong to its nonlinear multisplitting and can update the global approximation residing in the shared memory at any time. A local convergence analysis of this model is presented. Finally, we give a uumerical example which shows a 'strange' property that speedup Sp > p and efficiency Ep > 1.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11771275)the Science and Technology Program of Shandong Universities(No.J16LI04).
文摘In this paper,we present a modulus-based multisplitting iteration method based on multisplitting of the system matrix for a class of weakly nonlinear complementarity problem.And we prove the convergence of the method when the system matrix is an H_(+)-matrix.Finally,we give two numerical examples.
文摘This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
文摘By further generalizing Frommer's results in the sense of nonlinear multisplitting, we build a class of nonlinear multisplitting AOR-type methods, which covers many rather practical nonlinear multisplitting relaxation methods such as multisplitting AOR-Newton method, multisplitting AOR-chord method and multisplitting AOR-Steffensen method, etc.. Furthermore,a general convergence theorem for the nonlinear multisplitting AOR-type methods and the local convergence for the multisplitting AOR-Newton method are discussed in detail.A lot of numerical tests show that our new methods are feasible and satisfactory.
文摘In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.
基金The work was done in the state key laboratory of advanced design and manufacture for vehicle body of Hunan university973 national project of China granted 2004CB719402the National Natural Science Foundation of China(No.10371035)
文摘We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.