Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes qui...Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.展开更多
To achieve advanced nitrogen removal from actual municipal sewage,a novel multistage anoxic/aerobic process with sludge regeneration zone(R-MAO)was developed.The reactor was used to treat actual domestic sewage and th...To achieve advanced nitrogen removal from actual municipal sewage,a novel multistage anoxic/aerobic process with sludge regeneration zone(R-MAO)was developed.The reactor was used to treat actual domestic sewage and the nitrogen removal capacity of the sludge regeneration zone(R zone)was investigated during the long-term operation.The best performance was obtained at the R zone’s Oxidation-Reduction Potential(ORP)of-50±30 mV and hydraulic residence times(HRT)of 1.2 hr.The average effluent COD,TN,NH_(4)^(+)-N and NO_(3)^(−)-N of the R-MAO process were 18.0±2.3,7.5±0.6,1.0±0.5 and 4.6±0.4 mg/L,respectively,with the corresponding removal efficiency of COD,TN and NH_(4)^(+)-N were 92.9%±1.0%,84.1%±1.5% and 97.5%±1.1%.Compared to the sole MAO system,the TN removal efficiency of the R-MAO increased by 10.1%.Besides,under the optimal conditions,the contribution of the R zone in the R-MAO that removal COD,TN,NH_(4)^(+)-N and NO_(3)^(−)-N were 0.36,0.15,0.032 and 0.82 g/day.High-throughput sequencing results showed that uncultured_bacterium_f_Burkholderiaceae(5.20%),OLB8(1.04%)and Ottowia(1.03%)played an important role in denitrification in the R zone.This study provided effective guidance for the design and operation of the R-MAO process in domestic sewage treatment.展开更多
To explore the evolution mechanism of multistage machining processes and torsional fatigue behaviour based on strain energy for the first time and provide process optimization of axis parts of low alloy steel for serv...To explore the evolution mechanism of multistage machining processes and torsional fatigue behaviour based on strain energy for the first time and provide process optimization of axis parts of low alloy steel for service performance,four multistage machining processes were applied to the 45Cr Ni Mo VA steel,including the Rough Turning process(RT),RT+the Finish Turning process(FRT),FRT+the Grinding process(GFRT)and RT+the Finish Turning process on dry cutting condition(FRT0).The result showed that the FRT process’s average low-cycle torsional fatigue life increased by 50%when it evolved from the RT process.The lower surface roughness of R1.3μm caused the total strain energy to increase by 163.8 Pa mm/mm instead of the unchanged strain energy density,and the crack feature evolved from some specific bulges to flat shear plane characteristics.When the GFRT process evolved from the FRT process,its average fatigue life increased by 1.45 times,compared with the RT process.Plastic strain amplitude decreased by 21%,and the strain energy density decreased by 4%due to more considerable compressive residual stress(-249 MPa).Plastic deformation layer depth had a consistent tendency with surface roughness.In this paper,surface integrity evolutions on cyclic characteristics and fatigue behaviour have also been explained.A fatigue life prediction model based on the energy method for machined surface integrity is proposed.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51205286,51275348)
文摘Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
基金supported by a project of Shenzhen Science and Technology Plan (No. KCXFZ202002011006362)Project of Central and Southern China Municipal Engineering Design & Research Institute Co.,Ltd. (Technology Development 2019)
文摘To achieve advanced nitrogen removal from actual municipal sewage,a novel multistage anoxic/aerobic process with sludge regeneration zone(R-MAO)was developed.The reactor was used to treat actual domestic sewage and the nitrogen removal capacity of the sludge regeneration zone(R zone)was investigated during the long-term operation.The best performance was obtained at the R zone’s Oxidation-Reduction Potential(ORP)of-50±30 mV and hydraulic residence times(HRT)of 1.2 hr.The average effluent COD,TN,NH_(4)^(+)-N and NO_(3)^(−)-N of the R-MAO process were 18.0±2.3,7.5±0.6,1.0±0.5 and 4.6±0.4 mg/L,respectively,with the corresponding removal efficiency of COD,TN and NH_(4)^(+)-N were 92.9%±1.0%,84.1%±1.5% and 97.5%±1.1%.Compared to the sole MAO system,the TN removal efficiency of the R-MAO increased by 10.1%.Besides,under the optimal conditions,the contribution of the R zone in the R-MAO that removal COD,TN,NH_(4)^(+)-N and NO_(3)^(−)-N were 0.36,0.15,0.032 and 0.82 g/day.High-throughput sequencing results showed that uncultured_bacterium_f_Burkholderiaceae(5.20%),OLB8(1.04%)and Ottowia(1.03%)played an important role in denitrification in the R zone.This study provided effective guidance for the design and operation of the R-MAO process in domestic sewage treatment.
基金National Natural Science Foundation of China(No.52075042)。
文摘To explore the evolution mechanism of multistage machining processes and torsional fatigue behaviour based on strain energy for the first time and provide process optimization of axis parts of low alloy steel for service performance,four multistage machining processes were applied to the 45Cr Ni Mo VA steel,including the Rough Turning process(RT),RT+the Finish Turning process(FRT),FRT+the Grinding process(GFRT)and RT+the Finish Turning process on dry cutting condition(FRT0).The result showed that the FRT process’s average low-cycle torsional fatigue life increased by 50%when it evolved from the RT process.The lower surface roughness of R1.3μm caused the total strain energy to increase by 163.8 Pa mm/mm instead of the unchanged strain energy density,and the crack feature evolved from some specific bulges to flat shear plane characteristics.When the GFRT process evolved from the FRT process,its average fatigue life increased by 1.45 times,compared with the RT process.Plastic strain amplitude decreased by 21%,and the strain energy density decreased by 4%due to more considerable compressive residual stress(-249 MPa).Plastic deformation layer depth had a consistent tendency with surface roughness.In this paper,surface integrity evolutions on cyclic characteristics and fatigue behaviour have also been explained.A fatigue life prediction model based on the energy method for machined surface integrity is proposed.