For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory n...For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.展开更多
In radar systems of automatic detection, an estimate of background clutter power is used to set the detection threshold. An interference saturated environment is frequently encountered in these systems (multiple targe...In radar systems of automatic detection, an estimate of background clutter power is used to set the detection threshold. An interference saturated environment is frequently encountered in these systems (multiple target situations). Therefore, the detection of signals in such an environment becomes one of the most important problems to be solved. The double-threshold algorithm is one of the more interesting detectors used in these situations. While the first threshold operation ensures that the calculation of the detection (second) threshold is based on a set of samples which is free of strong interferers and is therefore much more representative of the noise level, the second threshold is used to declare the presence or the absence of the radar target. The object of the present paper is to analyze the performance of such type of CFAR schemes when the radar receiver contains a noncoherent integrator amongst its basic elements. It is found that the processor detectabil ity loss is very low and the performance degradation, caused by interferers is quite small even if the number of outlying targets is large, given that the first threshold is properly chosen.展开更多
基金supported in part by National Key R&D Program of China(Grant Nos.2021ZD0111501,2021ZD0111502)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province+8 种基金the Key Laboratory of Intelligent Manufacturing Technology(Shantou University)Ministry of Education,the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917144960530)the Project of Educational Commission of Guangdong Province of China(Grant No.2017KZDXM032)the State Key Lab of Digital Manufacturing Equipment&Technology(grant number DMETKF2019020)National Natural Science Foundation of China(Grant Nos.62176147,62002369)STU Scientific Research Foundation for Talents(Grant No.NTF21001)Science and Technology Planning Project of Guangdong Province of China(Grant Nos.2019A050520001,2021A0505030072,2022A1515110660)Science and Technology Special Funds Project of Guangdong Province of China(Grant Nos.STKJ2021176,STKJ2021019)Guangdong Special Support Program for Outstanding Talents(Grant No.2021JC06X549)。
文摘For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.
文摘In radar systems of automatic detection, an estimate of background clutter power is used to set the detection threshold. An interference saturated environment is frequently encountered in these systems (multiple target situations). Therefore, the detection of signals in such an environment becomes one of the most important problems to be solved. The double-threshold algorithm is one of the more interesting detectors used in these situations. While the first threshold operation ensures that the calculation of the detection (second) threshold is based on a set of samples which is free of strong interferers and is therefore much more representative of the noise level, the second threshold is used to declare the presence or the absence of the radar target. The object of the present paper is to analyze the performance of such type of CFAR schemes when the radar receiver contains a noncoherent integrator amongst its basic elements. It is found that the processor detectabil ity loss is very low and the performance degradation, caused by interferers is quite small even if the number of outlying targets is large, given that the first threshold is properly chosen.