With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case,...With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.展开更多
Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot eff...Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems.展开更多
This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equati...This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equations which are solved by using the Kronecker product of matrices. It is pointed out that the sampling periods can be selected in a convenient way for the solvability of such equations under rather weak conditions provided that the continuous plant is spectrally controllable. Some overview about the use of nonuniform sampling is also given in order to improve the system's performance.展开更多
In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on th...In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.展开更多
A new algorithm for constructing an inverse of a multivariable linear system is presented. This algorithm makes the constructing an inverse of the higher order matrices into searching for the equivalent normal form o...A new algorithm for constructing an inverse of a multivariable linear system is presented. This algorithm makes the constructing an inverse of the higher order matrices into searching for the equivalent normal form of the lower order matrices. Consequently, the calculation is more simple efficient and programmed than previous methods. Another result of the paper is that the lower reduced inverse system is obtained, by selecting special bases of the observable space of the original systems, it reveals the effect of the observability of the original systems on the order of the inverse systems.展开更多
To improve the dynamic characteristics and the coupling capability, a new predictive functional control algorithm is proposed for strong coupling multivariable systems with time delay, which combines predictive functi...To improve the dynamic characteristics and the coupling capability, a new predictive functional control algorithm is proposed for strong coupling multivariable systems with time delay, which combines predictive functional control and decoupliug control. First, a decoupling control algorithm is proposed, in which first-order models with time delay are established by analyzing the amplitude-frequency and phase-frequency characteristics of the decoupled subject. Then, a controller is designed for the single-variable subjects after decoupling based on the principles of predictive functional control. The simulation results show that this proposed algorithm has less online computation time and faster tracking. It can provide a more effective control for complex multivariable systems.展开更多
To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictabili...To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictability limit(MJPL) and corresponding single variable predictability limit(SVPL). The predictability limit, obtained from the evolutions of nonlinear error entropy and climatological state entropy, is not only used to measure the predictability of dynamical system with the constant climatological state entropy, but also appropriate to the case of climatological state entropy changed with time. With the help of daily NCEP-NCAR reanalysis data, by using a method of local dynamical analog, the nonlinear error entropy, climatological state entropy, and predictability limit are obtained, and the SVPLs and MJPL of the winter 500-hPa temperature field, zonal wind field and meridional wind field are also investigated. The results show that atmospheric predictability is well associated with the analytical variable. For single variable predictability, there exists a big difference for the three variables, with the higher predictability found for the temperature field and zonal wind field and the lower predictability for the meridional wind field. As seen from their spatial distributions, the SVPLs of the three variables appear to have a property of zonal distribution, especially for the meridional wind field, which has three zonal belts with low predictability and four zonal belts with high predictability. For multivariable joint predictability, the MJPL of multivariable system with the three variables is not a simple mean or linear combination of its SVPLs. It presents an obvious regional difference characteristic. Different regions have different results. In some regions, the MJPL is among its SVPLs. However, in other regions, the MJPL is less than its all SVPLs.展开更多
In the present paper, the formulae for matrix Padé-type approximation were improved. The mixed model reduction method of matrix Padé-type-Routh for the multivariable linear systems was presented. A well-know...In the present paper, the formulae for matrix Padé-type approximation were improved. The mixed model reduction method of matrix Padé-type-Routh for the multivariable linear systems was presented. A well-known example was given to illustrate that the mixed method is efficient.展开更多
The objective of this paper is to develop a variable learning rate for neural modeling of multivariable nonlinear stochastic system. The corresponding parameter is obtained by gradient descent method optimization. The...The objective of this paper is to develop a variable learning rate for neural modeling of multivariable nonlinear stochastic system. The corresponding parameter is obtained by gradient descent method optimization. The effectiveness of the suggested algorithm applied to the identification of behavior of two nonlinear stochastic systems is demonstrated by simulation experiments.展开更多
A discrete-dine control system model of equipment spare parts is proposed In this model,the stochastic demand, of the spare parts is described by the state equation disturbance. The controlpolicy of the system was ded...A discrete-dine control system model of equipment spare parts is proposed In this model,the stochastic demand, of the spare parts is described by the state equation disturbance. The controlpolicy of the system was deduced by means of the methods of a multivariable self-tuning regulatorand reduced-cud r state observer. An example was given in the end.展开更多
A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solvin...A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.展开更多
BACKGROUND Orthodontic treatment can easily cause local soft tissue reactions in the oral cavity of patients under mechanical stress,leading to oral mucosal ulcers and affecting their quality of life.At present,only l...BACKGROUND Orthodontic treatment can easily cause local soft tissue reactions in the oral cavity of patients under mechanical stress,leading to oral mucosal ulcers and affecting their quality of life.At present,only limited literature has explored the factors leading to oral ulcers in orthodontic treatment,and these research results are still controversial.AIM To investigate the current status and related factors of oral mucosal ulcers during orthodontic treatment,aiming to provide a valuable reference for preventing this disease in clinical practice.METHODS A total of 587 patients who underwent orthodontic treatment at the Peking University School of Stomatology and Hospital of Stomatology between 2020 and 2022 were selected and allocated to an observation or control group according to the incidence of oral mucosal ulcers during orthodontic therapy.A questionnaire survey was constructed to collect patient data,including basic information,lifestyle and eating habits,treatment details,mental factors,and trace element levels,and a comparative analysis of this data was performed between the two groups.RESULTS A logistic regression model with oral ulcers as the dependent variable was established.The regression results showed that age(≥60 years:odds ratio[OR]:6.820;95%confidence interval[CI]:2.226–20.893),smoking history(smoking:OR:4.434;95%CI:2.527–7.782),toothbrush hardness(hard:OR:2.804;95%CI:1.746–4.505),dietary temperature(hot diet:OR:1.399;95%CI:1.220–1.722),treatment course(>1 year:OR:3.830;95%CI:2.203–6.659),and tooth brushing frequency(>1 time per day:OR:0.228;95%CI:0.138–0.377)were independent factors for oral mucosal ulcers(P<0.05).Furthermore,Zn level(OR:0.945;95%CI:0.927–0.964)was a protective factor against oral ulcers,while the SAS(OR:1.284;95%CI:1.197–1.378)and SDS(OR:1.322;95%CI:1.231–1.419)scores were risk factors.CONCLUSION Age≥60 years,smoking history,hard toothbrush,hot diet,treatment course for>1 year,tooth brushing frequency of≤1 time per day,and mental anxiety are independent risk factors for oral mucosal ulcers.Therefore,these factors should receive clinical attention and be incorporated into the development and optimization of preventive strategies for reducing oral ulcer incidence.展开更多
BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen...BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.展开更多
Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods...Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.展开更多
Stress urinary incontinence(SUI)is a symptom of uncontrolled urine outflow that affects millions of women worldwide[1].SUI is a significant healthcare issue that affects the quality of life of women across numerous do...Stress urinary incontinence(SUI)is a symptom of uncontrolled urine outflow that affects millions of women worldwide[1].SUI is a significant healthcare issue that affects the quality of life of women across numerous domains,including social activities,physical health,mental well-being,employment,and sexual life.展开更多
This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by mu...This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.展开更多
The Ziyoutun Cu-Au district is located in the Jizhong–Yanbian Metallogenic Belt and possesses excellent prospects. However, the thick regolith and complex tectonic settings present challenges in terms of detecting an...The Ziyoutun Cu-Au district is located in the Jizhong–Yanbian Metallogenic Belt and possesses excellent prospects. However, the thick regolith and complex tectonic settings present challenges in terms of detecting and decomposition of weak geochemical anomalies. To address this challenge, we initially conducted a comprehensive analysis of 1:10,000-scale soil geochemical data. This analysis included multivariate statistical techniques, such as correlation analysis, R-mode cluster analysis, Q–Q plots and factor analysis. Subsequently, we decomposed the geochemical anomalies, identifying weak anomalies using spectrum-area modeling and local singularity analysis. The results indicate that the assemblage of Au-Cu-Bi-As-Sb represents the mineralization at Ziyoutun. In comparison to conventional methods, spectrumarea modeling and local singularity analysis outperform in terms of identification of anomalies. Ultimately, we considered four specific target areas(AP01, AP02, AP03 and AP04) for future exploration, based on geochemical anomalies and favorable geological factors. Within AP01 and AP02, the geochemical anomalies suggest potential mineralization at depth, whereas in AP03 and AP04 the surface anomalies require additional geological investigation. Consequently, we recommend conducting drilling, following more extensive surface fieldwork, at the first two targets and verifying surface anomalies in the last two targets. We anticipate these findings will significantly enhance future exploration in Ziyoutun.展开更多
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin...With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.展开更多
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.Thi...Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.This study analysed diatoms in surface sediment samples and a sediment core from the Lianjiang coast of the East China Sea,together with environmental variables.Principal component analysis of the environmental variables showed that sea surface salinity(SSS)and sea surface temperature were the most important factors controlling hydrological conditions in the Lianjiang coastal area,whereas canonical correspondence analysis indicated that SSS and pH were the main environmental factors affecting diatom distribution.Based on the modern diatom species–environmental variable database,we developed a diatom-based SSS transfer function to quantitatively reconstruct the variability in SSS between 1984 and 2021 for sediment core HK3 from the Lianjiang coastal area.The agreement between the reconstructed SSS and instrument SSS data from 1984 to 2021 suggests that diatombased SSS reconstruction is reliable for studying past SSS variability in the Lianjiang coastal area.Three low SSS events in AD 2019,2013,and 1999,together with an increased relative concentration of freshwater diatom species and coarser sediment grain sizes,corresponded to two super-typhoon events and a catastrophic flooding event in Lianjiang County.Thus,a diatom-based SSS transfer function for reconstructing past SSS variability in the estuarine and coastal areas of the East China Sea can be further used to reflect the paleoenvironmental events in this region.展开更多
文摘With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.
基金supported by the National Natural Science Foundation of China(No.92152301).
文摘Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems.
文摘This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equations which are solved by using the Kronecker product of matrices. It is pointed out that the sampling periods can be selected in a convenient way for the solvability of such equations under rather weak conditions provided that the continuous plant is spectrally controllable. Some overview about the use of nonuniform sampling is also given in order to improve the system's performance.
基金Projects(60634020, 61074117) supported by the National Natural Science Foundation of China
文摘In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.
文摘A new algorithm for constructing an inverse of a multivariable linear system is presented. This algorithm makes the constructing an inverse of the higher order matrices into searching for the equivalent normal form of the lower order matrices. Consequently, the calculation is more simple efficient and programmed than previous methods. Another result of the paper is that the lower reduced inverse system is obtained, by selecting special bases of the observable space of the original systems, it reveals the effect of the observability of the original systems on the order of the inverse systems.
基金supported by the National Natural Science Foundation of China(Nos.61104085,61104068,61273119)the Natural Science Foundation of Jiangsu Province(No.BK2010200)the Natural Science Foundation of Jiangsu Province Department of Education(No.11KJB510005)
文摘To improve the dynamic characteristics and the coupling capability, a new predictive functional control algorithm is proposed for strong coupling multivariable systems with time delay, which combines predictive functional control and decoupliug control. First, a decoupling control algorithm is proposed, in which first-order models with time delay are established by analyzing the amplitude-frequency and phase-frequency characteristics of the decoupled subject. Then, a controller is designed for the single-variable subjects after decoupling based on the principles of predictive functional control. The simulation results show that this proposed algorithm has less online computation time and faster tracking. It can provide a more effective control for complex multivariable systems.
基金supported by the National Natural Science Foundation of China (Grant No. 41375063)
文摘To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictability limit(MJPL) and corresponding single variable predictability limit(SVPL). The predictability limit, obtained from the evolutions of nonlinear error entropy and climatological state entropy, is not only used to measure the predictability of dynamical system with the constant climatological state entropy, but also appropriate to the case of climatological state entropy changed with time. With the help of daily NCEP-NCAR reanalysis data, by using a method of local dynamical analog, the nonlinear error entropy, climatological state entropy, and predictability limit are obtained, and the SVPLs and MJPL of the winter 500-hPa temperature field, zonal wind field and meridional wind field are also investigated. The results show that atmospheric predictability is well associated with the analytical variable. For single variable predictability, there exists a big difference for the three variables, with the higher predictability found for the temperature field and zonal wind field and the lower predictability for the meridional wind field. As seen from their spatial distributions, the SVPLs of the three variables appear to have a property of zonal distribution, especially for the meridional wind field, which has three zonal belts with low predictability and four zonal belts with high predictability. For multivariable joint predictability, the MJPL of multivariable system with the three variables is not a simple mean or linear combination of its SVPLs. It presents an obvious regional difference characteristic. Different regions have different results. In some regions, the MJPL is among its SVPLs. However, in other regions, the MJPL is less than its all SVPLs.
基金Project supported by National Natural Science Foundation of China (Grant No .10271074)
文摘In the present paper, the formulae for matrix Padé-type approximation were improved. The mixed model reduction method of matrix Padé-type-Routh for the multivariable linear systems was presented. A well-known example was given to illustrate that the mixed method is efficient.
文摘The objective of this paper is to develop a variable learning rate for neural modeling of multivariable nonlinear stochastic system. The corresponding parameter is obtained by gradient descent method optimization. The effectiveness of the suggested algorithm applied to the identification of behavior of two nonlinear stochastic systems is demonstrated by simulation experiments.
文摘A discrete-dine control system model of equipment spare parts is proposed In this model,the stochastic demand, of the spare parts is described by the state equation disturbance. The controlpolicy of the system was deduced by means of the methods of a multivariable self-tuning regulatorand reduced-cud r state observer. An example was given in the end.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013).
文摘A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.
文摘BACKGROUND Orthodontic treatment can easily cause local soft tissue reactions in the oral cavity of patients under mechanical stress,leading to oral mucosal ulcers and affecting their quality of life.At present,only limited literature has explored the factors leading to oral ulcers in orthodontic treatment,and these research results are still controversial.AIM To investigate the current status and related factors of oral mucosal ulcers during orthodontic treatment,aiming to provide a valuable reference for preventing this disease in clinical practice.METHODS A total of 587 patients who underwent orthodontic treatment at the Peking University School of Stomatology and Hospital of Stomatology between 2020 and 2022 were selected and allocated to an observation or control group according to the incidence of oral mucosal ulcers during orthodontic therapy.A questionnaire survey was constructed to collect patient data,including basic information,lifestyle and eating habits,treatment details,mental factors,and trace element levels,and a comparative analysis of this data was performed between the two groups.RESULTS A logistic regression model with oral ulcers as the dependent variable was established.The regression results showed that age(≥60 years:odds ratio[OR]:6.820;95%confidence interval[CI]:2.226–20.893),smoking history(smoking:OR:4.434;95%CI:2.527–7.782),toothbrush hardness(hard:OR:2.804;95%CI:1.746–4.505),dietary temperature(hot diet:OR:1.399;95%CI:1.220–1.722),treatment course(>1 year:OR:3.830;95%CI:2.203–6.659),and tooth brushing frequency(>1 time per day:OR:0.228;95%CI:0.138–0.377)were independent factors for oral mucosal ulcers(P<0.05).Furthermore,Zn level(OR:0.945;95%CI:0.927–0.964)was a protective factor against oral ulcers,while the SAS(OR:1.284;95%CI:1.197–1.378)and SDS(OR:1.322;95%CI:1.231–1.419)scores were risk factors.CONCLUSION Age≥60 years,smoking history,hard toothbrush,hot diet,treatment course for>1 year,tooth brushing frequency of≤1 time per day,and mental anxiety are independent risk factors for oral mucosal ulcers.Therefore,these factors should receive clinical attention and be incorporated into the development and optimization of preventive strategies for reducing oral ulcer incidence.
基金Supported by Health Science and Technology Project of Tianjin Health Commission,No.ZC20190Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-005ATianjin Medical University Clinical Research Fund,No.22ZYYLCCG04.
文摘BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.
基金National Natural Science Foundation of China(No.11575080)Hunan Provincial Natural Science Foundation of China(No.2022JJ30482)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220206).
文摘Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.
文摘Stress urinary incontinence(SUI)is a symptom of uncontrolled urine outflow that affects millions of women worldwide[1].SUI is a significant healthcare issue that affects the quality of life of women across numerous domains,including social activities,physical health,mental well-being,employment,and sexual life.
基金supported by the Dean Faculty of Science,University of Karachi research grant.
文摘This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.
基金project was supported by the Enterprise Authorized Item from the Jilin Sanhe Mining Development Co., Ltd. (3-4-2021-120)the Fundamental Research Funds for the Central Universities (2-9-2020-010)。
文摘The Ziyoutun Cu-Au district is located in the Jizhong–Yanbian Metallogenic Belt and possesses excellent prospects. However, the thick regolith and complex tectonic settings present challenges in terms of detecting and decomposition of weak geochemical anomalies. To address this challenge, we initially conducted a comprehensive analysis of 1:10,000-scale soil geochemical data. This analysis included multivariate statistical techniques, such as correlation analysis, R-mode cluster analysis, Q–Q plots and factor analysis. Subsequently, we decomposed the geochemical anomalies, identifying weak anomalies using spectrum-area modeling and local singularity analysis. The results indicate that the assemblage of Au-Cu-Bi-As-Sb represents the mineralization at Ziyoutun. In comparison to conventional methods, spectrumarea modeling and local singularity analysis outperform in terms of identification of anomalies. Ultimately, we considered four specific target areas(AP01, AP02, AP03 and AP04) for future exploration, based on geochemical anomalies and favorable geological factors. Within AP01 and AP02, the geochemical anomalies suggest potential mineralization at depth, whereas in AP03 and AP04 the surface anomalies require additional geological investigation. Consequently, we recommend conducting drilling, following more extensive surface fieldwork, at the first two targets and verifying surface anomalies in the last two targets. We anticipate these findings will significantly enhance future exploration in Ziyoutun.
基金This research is partially supported by the National Natural Science Foundation of China under Grant No.62376043Science and Technology Program of Sichuan Province under Grant Nos.2020JDRC0067,2023JDRC0087,and 24NSFTD0025.
文摘With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
基金The National Natural Science Foundation of China under contract Nos 42376236 and 42176226.
文摘Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.This study analysed diatoms in surface sediment samples and a sediment core from the Lianjiang coast of the East China Sea,together with environmental variables.Principal component analysis of the environmental variables showed that sea surface salinity(SSS)and sea surface temperature were the most important factors controlling hydrological conditions in the Lianjiang coastal area,whereas canonical correspondence analysis indicated that SSS and pH were the main environmental factors affecting diatom distribution.Based on the modern diatom species–environmental variable database,we developed a diatom-based SSS transfer function to quantitatively reconstruct the variability in SSS between 1984 and 2021 for sediment core HK3 from the Lianjiang coastal area.The agreement between the reconstructed SSS and instrument SSS data from 1984 to 2021 suggests that diatombased SSS reconstruction is reliable for studying past SSS variability in the Lianjiang coastal area.Three low SSS events in AD 2019,2013,and 1999,together with an increased relative concentration of freshwater diatom species and coarser sediment grain sizes,corresponded to two super-typhoon events and a catastrophic flooding event in Lianjiang County.Thus,a diatom-based SSS transfer function for reconstructing past SSS variability in the estuarine and coastal areas of the East China Sea can be further used to reflect the paleoenvironmental events in this region.