In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution ...In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution of permafrost were studied to under- stand the dislribution patterns of permafrost in Wenquan on the Qinghai-Tibet Plateau. Cluster and correlation analysis were per- formed based on 30 m Global Digital Elevation Model (GDEM) data and field data obtained using geophysical exploration and borehole drilling methods. A Multivariate Adaptive Regression Spline model (MARS) was developed to simulate permafrost spa- tial distribution over the studied area. A validation was followed by comparing to 201 geophysical exploration sites, as well as by comparing to two other models, i.e., a binary logistic regression model and the Mean Annual Ground Temperature model (IVlAGT). The MARS model provides a better simulation than the other two models. Besides the control effect of elevation on permafrost distribution, the MARS model also takes into account the impact of direct solar radiation on permafrost distribution.展开更多
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and...Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.展开更多
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl...This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.展开更多
The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly ...The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site.展开更多
This paper makes an approach to the approximate optimum in structural design,which combines the global response surface(GRS) based multivariate adaptive regression splines(MARS) with Move-Limit strategy(MLS).MAR...This paper makes an approach to the approximate optimum in structural design,which combines the global response surface(GRS) based multivariate adaptive regression splines(MARS) with Move-Limit strategy(MLS).MARS is an adaptive regression process,which fits in with the multidimensional problems.It adopts a modified recursive partitioning strategy to simplify high-dimensional problems into smaller highly accurate models.MLS for moving and resizing the search sub-regions is employed in the space of design variables.The quality of the approximation functions and the convergence history of the optimization process are reflected in MLS.The disadvantages of the conventional response surface method(RSM) have been avoided,specifically,highly nonlinear high-dimensional problems.The GRS/MARS with MLS is applied to a high-dimensional test function and an engineering problem to demonstrate its feasibility and convergence,and compared with quadratic response surface(QRS) models in terms of computational efficiency and accuracy.展开更多
The design and construction of underground structures are significantly affected by the distribution of geological formations.Prediction of the geological interfaces using limited data has been a difficult task.A mult...The design and construction of underground structures are significantly affected by the distribution of geological formations.Prediction of the geological interfaces using limited data has been a difficult task.A multivariate adaptive regression spline(MARS)method capable of modeling nonlinearities automatically was used in this study to spatially predict the elevations of geological interfaces.Borehole data from two sites in Singapore were used to evaluate the capability of the MARS method for predicting geological interfaces.By comparing the predicted values with the borehole data,it is shown that the MARS method has a mean of root mean square error of 4.4 m for the predicted elevations of the Kallang Formation–Old Alluvium interface.In addition,the MARS method is able to produce reasonable prediction intervals in the sense that the percentage of testing data covered by 95% prediction intervals was close to the associated confidence level,95%.More importantly,the prediction interval evaluated by the MARS method had a non-constant width that appropriately reflected the data density and geological complexity.展开更多
The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final p...The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final product in FDR method, the unconfined compressive strength of stabilized material should be known. This paper aims to develop a mathematical model for predicting the unconfined compressive strength (UCS) of soil-RAP blend stabilized with Portland cement based on multivariate adaptive regression spline (MARS). To this end, two different aggregate materials were mixed with different percentages of RAP and then stabilized by different percentages of Portland cement. For training and testing of MARS model, total of 64 experimental UCS data were employed. Predictors or independent variables in the developed model are percentage of RAP, percentage of cement, optimum moisture content, percent passing of #200 sieve, and curing time. The results demonstrate that MARS has a great ability for prediction of the UCS in case of soil-RAP blend stabilized with Portland cement (R2 is more than 0.97). Sensitivity analysis of the proposed model showed that the cement, optimum moisture content, and percent passing of #200 sieve are the most influential parameters on the UCS of FDR layer.展开更多
In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of...In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of phenotypes that are potentially related to the complex disease under study. Second, each phenotype is collected from the same subject repeatedly over time. In this study, we present a nonparametric regression approach to study multivariate and time-repeated phenotypes together by using the technique of the multivariate adaptive regression splines for analysis of longitudinal data (MASAL), which makes it possible to identify genes, gene-gene and gene-environment, including time, interactions associated with the phenotypes of interest. Furthermore, we propose a permutation test to assess the associations between the phenotypes and selected markers. Through simulation, we demonstrate that our proposed approach has advantages over the existing methods that examine each longitudinal phenotype separately or analyze the summarized values of phenotypes by compressing them into one-time-point phenotypes. Application of the proposed method to the Framingham Heart Study illustrates that the use of multivariate longitudinal phenotypes enhanced the significance of the association test.展开更多
We propose a method for spatial downscaling of Landsat 8-derived LST maps from 100(30 m)resolution down to 2–4 m with the use of the Multiple Adaptive Regression Splines(MARS)models coupled with very high resolution ...We propose a method for spatial downscaling of Landsat 8-derived LST maps from 100(30 m)resolution down to 2–4 m with the use of the Multiple Adaptive Regression Splines(MARS)models coupled with very high resolution auxiliary data derived from hyperspectral aerial imagery and large-scale topographic maps.We applied the method to four Landsat 8 scenes,two collected in summer and two in winter,for three British towns collectively representing a variety of urban form.We used several spectral indices as well as fractional coverage of water and paved surfaces as LST predictors,and applied a novel method for the correction of temporal mismatch between spectral indices derived from aerial and satellite imagery captured at different dates,allowing for the application of the downscaling method for multiple dates without the need for repeating the aerial survey.Our results suggest that the method performed well for the summer dates,achieving RMSE of 1.40–1.83 K prior to and 0.76–1.21 K after correction for residuals.We conclude that the MARS models,by addressing the non-linear relationship of LST at coarse and fine spatial resolutions,can be successfully applied to produce high resolution LST maps suitable for studies of urban thermal environment at local scales.展开更多
基金supported financially by the Special Basic Research Program of China(Grant No.2008FY110200)partially by Open Programme of State Key Laboratory(No.SKLFSE201009)
文摘In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution of permafrost were studied to under- stand the dislribution patterns of permafrost in Wenquan on the Qinghai-Tibet Plateau. Cluster and correlation analysis were per- formed based on 30 m Global Digital Elevation Model (GDEM) data and field data obtained using geophysical exploration and borehole drilling methods. A Multivariate Adaptive Regression Spline model (MARS) was developed to simulate permafrost spa- tial distribution over the studied area. A validation was followed by comparing to 201 geophysical exploration sites, as well as by comparing to two other models, i.e., a binary logistic regression model and the Mean Annual Ground Temperature model (IVlAGT). The MARS model provides a better simulation than the other two models. Besides the control effect of elevation on permafrost distribution, the MARS model also takes into account the impact of direct solar radiation on permafrost distribution.
文摘Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
基金supported by The Hong Kong Polytechnic University through the project RU3Ythe Research Grant Council through the project PolyU 5128/13E+1 种基金National Natural Science Foundation of China(Grant No.51778313)Cooperative Innovation Center of Engineering Construction and Safety in Shangdong Blue Economic Zone
文摘This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.
基金indebted to the Sohar University and the University of Buraimi, Oman, to support this study
文摘The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site.
基金Project supported by the National Natural Science Foundation of China (Grant No.50775084)the National Hightechnology Research and Development Program of China (Grant No.2006AA04Z121)
文摘This paper makes an approach to the approximate optimum in structural design,which combines the global response surface(GRS) based multivariate adaptive regression splines(MARS) with Move-Limit strategy(MLS).MARS is an adaptive regression process,which fits in with the multidimensional problems.It adopts a modified recursive partitioning strategy to simplify high-dimensional problems into smaller highly accurate models.MLS for moving and resizing the search sub-regions is employed in the space of design variables.The quality of the approximation functions and the convergence history of the optimization process are reflected in MLS.The disadvantages of the conventional response surface method(RSM) have been avoided,specifically,highly nonlinear high-dimensional problems.The GRS/MARS with MLS is applied to a high-dimensional test function and an engineering problem to demonstrate its feasibility and convergence,and compared with quadratic response surface(QRS) models in terms of computational efficiency and accuracy.
基金supported by the Singapore Ministry of National Development and the National Research Foundation,Prime Minister’s Office under the Land and Liveability National Innovation Challenge(L2 NIC)Research Programme(Award No.L2NICCFP2-2015-1).
文摘The design and construction of underground structures are significantly affected by the distribution of geological formations.Prediction of the geological interfaces using limited data has been a difficult task.A multivariate adaptive regression spline(MARS)method capable of modeling nonlinearities automatically was used in this study to spatially predict the elevations of geological interfaces.Borehole data from two sites in Singapore were used to evaluate the capability of the MARS method for predicting geological interfaces.By comparing the predicted values with the borehole data,it is shown that the MARS method has a mean of root mean square error of 4.4 m for the predicted elevations of the Kallang Formation–Old Alluvium interface.In addition,the MARS method is able to produce reasonable prediction intervals in the sense that the percentage of testing data covered by 95% prediction intervals was close to the associated confidence level,95%.More importantly,the prediction interval evaluated by the MARS method had a non-constant width that appropriately reflected the data density and geological complexity.
文摘The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final product in FDR method, the unconfined compressive strength of stabilized material should be known. This paper aims to develop a mathematical model for predicting the unconfined compressive strength (UCS) of soil-RAP blend stabilized with Portland cement based on multivariate adaptive regression spline (MARS). To this end, two different aggregate materials were mixed with different percentages of RAP and then stabilized by different percentages of Portland cement. For training and testing of MARS model, total of 64 experimental UCS data were employed. Predictors or independent variables in the developed model are percentage of RAP, percentage of cement, optimum moisture content, percent passing of #200 sieve, and curing time. The results demonstrate that MARS has a great ability for prediction of the UCS in case of soil-RAP blend stabilized with Portland cement (R2 is more than 0.97). Sensitivity analysis of the proposed model showed that the cement, optimum moisture content, and percent passing of #200 sieve are the most influential parameters on the UCS of FDR layer.
基金The authors thank two anonymous referees for their constructive comments and suggestions. This work was supported by grant R01 DA016750-09 from the National Institute on Drug Abuse. Zhu's work was also supported by the National Natural Science Foundation of China (Grant No. 11001044), the Yhndamental Research ~nds for the Central Universities (11CXPY007, 10JCXK001), the Natural Science Foundation of Jilin Province (Grant No. 201215007), the Scientific Research Foundation for Returned Scholars, MOE of China, and the Program for Changjiang Scholars and Innovative Research Team in University. The Framingham Heart Study project is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (N01 HC25195). The Framingham data used for the analyses described in this manuscript were obtained through dbGaP (phs000128.v3.p3).
文摘In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of phenotypes that are potentially related to the complex disease under study. Second, each phenotype is collected from the same subject repeatedly over time. In this study, we present a nonparametric regression approach to study multivariate and time-repeated phenotypes together by using the technique of the multivariate adaptive regression splines for analysis of longitudinal data (MASAL), which makes it possible to identify genes, gene-gene and gene-environment, including time, interactions associated with the phenotypes of interest. Furthermore, we propose a permutation test to assess the associations between the phenotypes and selected markers. Through simulation, we demonstrate that our proposed approach has advantages over the existing methods that examine each longitudinal phenotype separately or analyze the summarized values of phenotypes by compressing them into one-time-point phenotypes. Application of the proposed method to the Framingham Heart Study illustrates that the use of multivariate longitudinal phenotypes enhanced the significance of the association test.
基金This research(Grant Number NE/J015067/1)the Fragments,Functions and Flows in Urban Ecosystem Services(F3UES)project as part of the larger Biodiversity and Ecosystem Service Sustainability(BESS)framework.BESS is a six-year programme(2011-2017)funded+1 种基金the UK Natural Environment Research Council(NERC)the Biotechnology and Biological Sciences Research Council(BBSRC)as part of the UK’s Living with Environmental Change(LWEC)programme.
文摘We propose a method for spatial downscaling of Landsat 8-derived LST maps from 100(30 m)resolution down to 2–4 m with the use of the Multiple Adaptive Regression Splines(MARS)models coupled with very high resolution auxiliary data derived from hyperspectral aerial imagery and large-scale topographic maps.We applied the method to four Landsat 8 scenes,two collected in summer and two in winter,for three British towns collectively representing a variety of urban form.We used several spectral indices as well as fractional coverage of water and paved surfaces as LST predictors,and applied a novel method for the correction of temporal mismatch between spectral indices derived from aerial and satellite imagery captured at different dates,allowing for the application of the downscaling method for multiple dates without the need for repeating the aerial survey.Our results suggest that the method performed well for the summer dates,achieving RMSE of 1.40–1.83 K prior to and 0.76–1.21 K after correction for residuals.We conclude that the MARS models,by addressing the non-linear relationship of LST at coarse and fine spatial resolutions,can be successfully applied to produce high resolution LST maps suitable for studies of urban thermal environment at local scales.