期刊文献+
共找到1,960篇文章
< 1 2 98 >
每页显示 20 50 100
Study on QSAR of Taxol and its Derivatives Based on Stepwise Multivariate Linear Regression Analysis 被引量:1
1
作者 刘艾林 迟翰林 《Journal of Chinese Pharmaceutical Sciences》 CAS 1997年第1期21-25,共5页
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun... Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities. 展开更多
关键词 TAXOL Stepwise multivariate linear regression (SMLR) Molar refractivity
全文增补中
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
2
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio non-linear regression Artificial neural networks Fuzzy logic
下载PDF
Multivariate adaptive regression splines and neural network models for prediction of pile drivability 被引量:40
3
作者 Wengang Zhang Anthony T.C.Goh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期45-52,共8页
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and... Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. 展开更多
关键词 Back propagation neural network multivariate adaptive regression splines Pile drivability Computational efficiency NONLINEARITY
下载PDF
Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines 被引量:10
4
作者 Leilei Liu Shaohe Zhang +1 位作者 Yung-Ming Cheng Li Liang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期671-682,共12页
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl... This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs. 展开更多
关键词 Slope stability Efficient reliability analysis Spatial variability Random field multivariate adaptive regression splines Monte Carlo simulation
下载PDF
Mountain permafrost distribution modeling using Multivariate Adaptive Regression Spline (MARS) in the Wenquan area over the Qinghai-Tibet Plateau 被引量:3
5
作者 XiuMin Zhang ZhuoTong Nan +3 位作者 JiChun Wu ErJi Du Tong Wang YanHui You 《Research in Cold and Arid Regions》 2012年第5期361-370,共10页
In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution ... In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution of permafrost were studied to under- stand the dislribution patterns of permafrost in Wenquan on the Qinghai-Tibet Plateau. Cluster and correlation analysis were per- formed based on 30 m Global Digital Elevation Model (GDEM) data and field data obtained using geophysical exploration and borehole drilling methods. A Multivariate Adaptive Regression Spline model (MARS) was developed to simulate permafrost spa- tial distribution over the studied area. A validation was followed by comparing to 201 geophysical exploration sites, as well as by comparing to two other models, i.e., a binary logistic regression model and the Mean Annual Ground Temperature model (IVlAGT). The MARS model provides a better simulation than the other two models. Besides the control effect of elevation on permafrost distribution, the MARS model also takes into account the impact of direct solar radiation on permafrost distribution. 展开更多
关键词 permafrost distribution model multivariate Adaptive regression Splines Qinghai-Tibet Plateau PERMAFROST
下载PDF
A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method 被引量:4
6
作者 Honggui Han Xiaolong Wu +1 位作者 Luming Ge Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期1071-1077,共7页
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ... In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods. 展开更多
关键词 Sludge volume index multivariate quadratic polynomial regression Local estimation method Wastewater treatment process
下载PDF
ASSESSMENT OF LOCAL INFLUENCE IN MULTIVARIATE REGRESSION MODEL 被引量:1
7
作者 石磊 任仕泉 《数学物理学报(A辑)》 CSCD 北大核心 1997年第S1期184-194,共11页
In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error vari... In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error variance, response variables and explanatory variables are derived, and the results are compared with those of case- deletion. Two examples are analyzed for illustration. 展开更多
关键词 INFLUENCE GRAPH LOCAL INFLUENCE multivariate regression model perturba- tion SCHEME
下载PDF
Using multivariate adaptive regression splines to develop relationship between rock quality designation and permeability 被引量:3
8
作者 Mohsin Usman Qureshi Zafar Mahmood Ali Murtaza Rasool 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1180-1187,共8页
The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly ... The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site. 展开更多
关键词 In situ permeability LIMESTONE SANDSTONE Lugeon Rock quality designation(RQD) multivariate adaptive regression splines (MARS)
下载PDF
Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression 被引量:2
9
作者 Nazih Abu-Shikhah Fawwaz Elkarmi Osama M. Aloquili 《Smart Grid and Renewable Energy》 2011年第2期126-135,共10页
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ... Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required. 展开更多
关键词 Medium-Term LOAD Forecasting Electrical PEAK LOAD multivariABLE regression And TIME SERIES
下载PDF
Mapping QTL for Categorical Traits with Multivariate Regression
10
作者 田佺 杨润清 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第S1期97-102,共6页
Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presen... Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presence or absence). It has been shown that such a binary trait also can be analyzed with the simple linear regression, subject to virtually no loss in power compared to the generalized linear model analysis. Binary trait is a special case of a multiple categorical trait (e.g., low, medium or high). We propose a mechanism to decompose a multiple categorical trait into an array of correlated binary variables. The categorical trait turned multiple binary traits are analyzed with a multivariate linear regression method. Turning the problem of categorical trait mapping into that of multivariate mapping allows the exploration of pleiotropic effects of QTL for different categories. Efficiency of the method is verified through a series of simulation experiments. 展开更多
关键词 CATEGORICAL TRAIT MAPPING QTL multivariate linear regression analysis
下载PDF
COX MULTIVARIATE REGRESSION ANALYSIS OF RECURRENCE FACTORS FOR COLONIC CARCINOMA
11
作者 杜寒松 王国斌 +2 位作者 秦青平 夏玉春 司徒光伟 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2004年第4期274-278,共5页
Objective: To determine the independent prognostic factors in the recurrence of colonic carcinoma after curative resection. Methods: Two hundred and one patients undergoing curative resections for colonic carcinoma we... Objective: To determine the independent prognostic factors in the recurrence of colonic carcinoma after curative resection. Methods: Two hundred and one patients undergoing curative resections for colonic carcinoma were investigated by univariate and Cox multivariate regression analyses. Ten factors contributed to the rate were analyzed. Results: Dukes stages, obstruction, postoperative chemotherapy as well as the growth manner of the tumor were significantly associated with the recurrence rate of colonic carcinoma (P<0.05) by univariate analysis, while Dukes stages, obstruction, and postoperative chemotherapy were significant factors by the multivariate analysis. Conclusion: Dukes stages, obstruction, and postoperative chemotherapy are independent prognostic factors in the recurrence of colonic carcinoma. 展开更多
关键词 Cox multivariate regression analysis Recurrence factors Colonic carcinoma DIAGNOSIS
下载PDF
LIMITING BEHAVIOR OF RECURSIVE M-ESTIMATORS IN MULTIVARIATE LINEAR REGRESSION MODELS AND THEIR ASYMPTOTIC EFFICIENCIES
12
作者 缪柏其 吴月华 刘东海 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期319-329,共11页
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi... Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied. 展开更多
关键词 asymptotic efficiency asymptotic normality asymptotic relative efficiency least absolute deviation least squares M-ESTIMATION multivariate linear optimal estimator reeursive algorithm regression coefficients robust estimation regression model
下载PDF
Expanding the Scope of Multivariate Regression Approaches in Cross-Omics Research
13
作者 Xiaoxi Hu Yue Ma +2 位作者 Yakun Xu Peiyao Zhao Jun Wang 《Engineering》 SCIE EI 2021年第12期1725-1731,共7页
Recent technological advancements and developments have led to a dramatic increase in the amount of high-dimensional data and thus have increased the demand for proper and efficient multivariate regression methods.Num... Recent technological advancements and developments have led to a dramatic increase in the amount of high-dimensional data and thus have increased the demand for proper and efficient multivariate regression methods.Numerous traditional multivariate approaches such as principal component analysis have been used broadly in various research areas,including investment analysis,image identification,and population genetic structure analysis.However,these common approaches have the limitations of ignoring the correlations between responses and a low variable selection efficiency.Therefore,in this article,we introduce the reduced rank regression method and its extensions,sparse reduced rank regression and subspace assisted regression with row sparsity,which hold potential to meet the above demands and thus improve the interpretability of regression models.We conducted a simulation study to evaluate their performance and compared them with several other variable selection methods.For different application scenarios,we also provide selection suggestions based on predictive ability and variable selection accuracy.Finally,to demonstrate the practical value of these methods in the field of microbiome research,we applied our chosen method to real population-level microbiome data,the results of which validated our method.Our method extensions provide valuable guidelines for future omics research,especially with respect to multivariate regression,and could pave the way for novel discoveries in microbiome and related research fields. 展开更多
关键词 multivariate regression methods Reduced rank regression SPARSITY Dimensionality reduction Variable selection
下载PDF
Multivariate adaptive regression splines based simulation optimization using move-limit strategy
14
作者 毛虎平 吴义忠 陈立平 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期542-547,共6页
This paper makes an approach to the approximate optimum in structural design,which combines the global response surface(GRS) based multivariate adaptive regression splines(MARS) with Move-Limit strategy(MLS).MAR... This paper makes an approach to the approximate optimum in structural design,which combines the global response surface(GRS) based multivariate adaptive regression splines(MARS) with Move-Limit strategy(MLS).MARS is an adaptive regression process,which fits in with the multidimensional problems.It adopts a modified recursive partitioning strategy to simplify high-dimensional problems into smaller highly accurate models.MLS for moving and resizing the search sub-regions is employed in the space of design variables.The quality of the approximation functions and the convergence history of the optimization process are reflected in MLS.The disadvantages of the conventional response surface method(RSM) have been avoided,specifically,highly nonlinear high-dimensional problems.The GRS/MARS with MLS is applied to a high-dimensional test function and an engineering problem to demonstrate its feasibility and convergence,and compared with quadratic response surface(QRS) models in terms of computational efficiency and accuracy. 展开更多
关键词 global response surface(GRS) multivariate adaptive regression splines(MARS) Move-Limit strategy(MLS) quadratic response surface(QRS)
下载PDF
Mapping species assemblages of tropical forests at different hierarchical levels based on multivariate regression trees
15
作者 Qi Yang Maaike Y.Bader +3 位作者 Guang Feng Jialing Li Dexu Zhang Wenxing Long 《Forest Ecosystems》 SCIE CSCD 2023年第3期387-397,共11页
Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species divers... Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species diversity and abundance of rare species challenge classification concepts, while remote sensing signals may not vary systematically with species composition, complicating the technical capability for delineating vegetation types in the landscape.Methods: We used a combination of field-based compositional data and their relations to environmental variables to predict the distribution of forest types in the Wuzhishan National Natural Reserve(WNNR), Hainan Island,China, using multivariate regression trees(MRT). The MRT was based on arboreal vegetation composition in 132plots of 20 m×20 m with a regular spacing of 1 km. Apart from the MRT, non-metric multidimensional scaling(NMDS) was used to evaluate vegetation-environment relationships.Results: The MRT model worked best when using 14 key environmental variables including topography, climate,latitude and soil, although the difference with the simpler model including only topographical variables was small. The full model classified the 132 plots into 3 vegetation types, 6 formation groups, 20 formations and 65associations at different hierarchical syntaxonomic levels. This model was the basis for forest vegetation maps for the WNNR. MRT and NMDS showed that elevation was the main driving force for the distribution of vegetation types and formation groups. Climate, latitude, and soil(especially available P), together with topographic variables, all influenced the distribution of formations and associations.Conclusions: While elevation determines forest-type distributions, lower-level syntaxonomic forest classes respond to the topographic diversity typical for mountains. Apart from providing the first detailed forest vegetation map for any part of WNNR, we show how, in spite of limitations, MRT with existing environmental data can be a useful method for mapping diverse and remote tropical forests. 展开更多
关键词 Species assemblages Tropical forest MAPPING multivariate regression trees Non-metric multidimensional scaling
下载PDF
Two Stage Estimation and Its Covariance Matrix in Multivariate Seemingly Unrelated Regression System
16
作者 WANG Shi-qing YANG qiao LIU fa-gui 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期397-401,共5页
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
关键词 multivariate seemingly unrelated regression system two stage estimation covariance matrix unrestricted estimator
下载PDF
Some Practical Issues Related to Univariate Regression Analysis Prior to Multivariate Regression Analysis in Randomized Controlled Clinical Trials
17
作者 A.K. Mathai B.N. Murthy 《Journal of Mathematics and System Science》 2013年第8期371-380,共10页
Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Ana... Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis. 展开更多
关键词 Univariate regression multivariate regression clinical trial.
下载PDF
Multivariate analysis of oral mucosal ulcers during orthodontic treatment 被引量:1
18
作者 Jing Chang Xue Li 《World Journal of Clinical Cases》 SCIE 2024年第26期5868-5876,共9页
BACKGROUND Orthodontic treatment can easily cause local soft tissue reactions in the oral cavity of patients under mechanical stress,leading to oral mucosal ulcers and affecting their quality of life.At present,only l... BACKGROUND Orthodontic treatment can easily cause local soft tissue reactions in the oral cavity of patients under mechanical stress,leading to oral mucosal ulcers and affecting their quality of life.At present,only limited literature has explored the factors leading to oral ulcers in orthodontic treatment,and these research results are still controversial.AIM To investigate the current status and related factors of oral mucosal ulcers during orthodontic treatment,aiming to provide a valuable reference for preventing this disease in clinical practice.METHODS A total of 587 patients who underwent orthodontic treatment at the Peking University School of Stomatology and Hospital of Stomatology between 2020 and 2022 were selected and allocated to an observation or control group according to the incidence of oral mucosal ulcers during orthodontic therapy.A questionnaire survey was constructed to collect patient data,including basic information,lifestyle and eating habits,treatment details,mental factors,and trace element levels,and a comparative analysis of this data was performed between the two groups.RESULTS A logistic regression model with oral ulcers as the dependent variable was established.The regression results showed that age(≥60 years:odds ratio[OR]:6.820;95%confidence interval[CI]:2.226–20.893),smoking history(smoking:OR:4.434;95%CI:2.527–7.782),toothbrush hardness(hard:OR:2.804;95%CI:1.746–4.505),dietary temperature(hot diet:OR:1.399;95%CI:1.220–1.722),treatment course(>1 year:OR:3.830;95%CI:2.203–6.659),and tooth brushing frequency(>1 time per day:OR:0.228;95%CI:0.138–0.377)were independent factors for oral mucosal ulcers(P<0.05).Furthermore,Zn level(OR:0.945;95%CI:0.927–0.964)was a protective factor against oral ulcers,while the SAS(OR:1.284;95%CI:1.197–1.378)and SDS(OR:1.322;95%CI:1.231–1.419)scores were risk factors.CONCLUSION Age≥60 years,smoking history,hard toothbrush,hot diet,treatment course for>1 year,tooth brushing frequency of≤1 time per day,and mental anxiety are independent risk factors for oral mucosal ulcers.Therefore,these factors should receive clinical attention and be incorporated into the development and optimization of preventive strategies for reducing oral ulcer incidence. 展开更多
关键词 Orthodontic treatment Oral ulcers multivariate Logistic regression Prevent disease
下载PDF
A method for real power transfer allocation using multivariable regression analysis 被引量:6
19
作者 Hussain Shareef Azah Mohamed +1 位作者 Saifunizam Abd.Khalid Mohd Wazir Mustafa 《Journal of Central South University》 SCIE EI CAS 2012年第1期179-186,共8页
A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine re... A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation. 展开更多
关键词 power tracing multivariable regression power systems DEREGULATION
下载PDF
Using Multivariable Linear Regression Technique for Modeling Productivity Construction in Iraq
20
作者 Faiq Mohammed Sarhan Al-Zwainy Mohammed Hashim Abdulmajeed Hadi Salih Mijwel Aljumaily 《Open Journal of Civil Engineering》 2013年第3期127-135,共9页
Productivity is a very important element in the process of construction project management especially with regard to the estimation of the duration of the construction activities, this study aims at developing constru... Productivity is a very important element in the process of construction project management especially with regard to the estimation of the duration of the construction activities, this study aims at developing construction productivity estimating model for marble finishing works of floors using Multivariable Linear Regression technique (MLR). The model was developed based on 100 set of data collected in Iraq for different types of projects such as residential, commercial and educational projects. Which these are used in developing the model and evaluating its performance. Ten influencing factors are utilized for productivity forecasting by MLR model, and they include age, experience, number of the assist labor, height of the floor, size of the marbles tiles, security conditions, health status for the work team, weather conditions, site condition, and availability of construction materials. One model was built for the prediction of the productivity of marble finishing works for floors. It was found that MLR have the ability to predict the productivity for finishing works with excellent degree of accuracy of the coefficient of correlation (R) 90.6%, and average accuracy percentage of 96.3%. This indicates that the relationship between the independent and independent variables of the developed models is good and the predicted values from a forecast model fit with the real-life data. 展开更多
关键词 multivariABLE Linear regression Techniques CONSTRUCTION PRODUCTIVITY FINISHING WORK COEFFICIENT of Correlation
下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部