期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multivariable Dynamic Modeling for Molten Iron Quality Using Incremental Random Vector Functional-link Networks 被引量:4
1
作者 Li ZHANG Ping ZHOU +2 位作者 He-da SONG Meng YUAN Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1151-1159,共9页
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p... Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods. 展开更多
关键词 molten iron quality multivariable incremental random vector functional-link network blast furnace iron-making data-driven modeling principal component analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部