Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters...Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2 (S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2 (S).展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.10901013and11271037)Beijing Natural Science Foundation(Grant No.1122008)Fundamental Research Funds for the Central Universities(Grant No.2011JBM299)
文摘Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2 (S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2 (S).