Melon(Cucumis melo L.)production is often restricted by a plethora of pests and diseases,including powdery mildew and downy mildew caused respectively by the fungal species Podosphaera xanthii/Golovinomyces orontii an...Melon(Cucumis melo L.)production is often restricted by a plethora of pests and diseases,including powdery mildew and downy mildew caused respectively by the fungal species Podosphaera xanthii/Golovinomyces orontii and oomycete species Pseudoperonospora cubensis.Many efforts have been directed on identification of resistant sources by screening(wild)melon germplasm.In the current review,we summarized such efforts from various publications of the last 50 plus years.Resistance to powdery mildew has been identified in 239 melon accessions and downy mildew resistance in 452 accessions of both C.melo and the wild relative species C.figarei.Among the resistance sources,C.melo var.cantalupensis accessions PMR 45,PMR 5,PMR 6,and WMR 29 as well as C.melo var.momordica accessions PI 124111,PI 124112,and PI 414723 have been considered as the most valuable germplasm because multiple resistance genes have been identified from these accessions and are widely used in melon resistance breeding.Further genetic mapping in a number of resistant sources has enabled identification of 25 dominant genes,two recessive genes and seven QTLs conferring powdery mildew resistance,as well as eight dominant genes and 11 QTLs for downy mildew resistances.Based on the reported sequences of associated markers,we anchored physically(many of)these genes and QTLs to chromosomes of the melon cv.DHL92 genome.In addition to presenting a comprehensive overview on powdery mildew and downy mildew resistance in(wild)melon germplasm,we suggest strategies aiming at breeding melon with durable and broad-spectrum resistance to pathogens and pests.展开更多
A collection of melon (Cucumis melo L.) from Kerala state, Southern India, consisting of thirty three accessions was evaluated for 22 quantitative and 14 qualitative characteristics to estimate the phenotypic diversit...A collection of melon (Cucumis melo L.) from Kerala state, Southern India, consisting of thirty three accessions was evaluated for 22 quantitative and 14 qualitative characteristics to estimate the phenotypic diversity. The collection showed appreciable phenotypic diversity in fruit related traits. Principal component analysis (PCA) was performed to determine the relationships among the populations. The analysis revealed that the variations in stem hair length, number of nodes per plant on 60th day, fruit shape, fruit length, fruit weight, fruit colour at ripening, fruit rind hardness, flesh colour, flesh firmness, quality of flesh, shelf life, seed colour were the principle characters to discriminate melon accessions evaluated in the present study. When the 33 populations were plotted on the first two principal components, accounting for 49.97% of the total variation, three clusters were identified, accounting for 36 morphological attributes used in the study. The greater part of diversity was accounted for fruit diameter, fruit weight, fruit length and width, fruit cavity length and diameter, seed length and colour. Flesh area of fruit, flesh thickness, leaf size, seed weight, seed index did not account for variation in the first six principal components of the melon collection. Scatter diagram segregated the acidulus and momordica into different clusters. This evaluation of fruit trait variability can assist geneticists and breeders to identify populations with desirable characteristics for inclusion in various breeding programmes.展开更多
Due to climate change,it is necessary to develop plant varieties that are resilient to climate conditions and resistant to abiotic and biotic stresses.The use of microalgae,which are microorganisms that contain carboh...Due to climate change,it is necessary to develop plant varieties that are resilient to climate conditions and resistant to abiotic and biotic stresses.The use of microalgae,which are microorganisms that contain carbohydrates,proteins,lipids,and vitamins,against drought tolerance is a new approach.The aim of the current study was to determine the drought-related mechanisms in the conomon melon genotype and develop drought-tolerant melon cultivars.Morphological,physiological,pomological,and molecular analyses were carried out on the algae-treated genotypes.It has been determined that commercial algae application provides the best results in leaf temperature,leaf relative water contents(LRWC),plant height,fruit length,fruit diameter,and yield,while Cag Cag(a special river in the region)stream algae application gives better results in main stem diameter.It was determined that the number of nodes in the control(without algae)plots was higher than in the other two treatments.Yield and LRWC and plant height values of genotype 7 were the best values among other genotypes.The leaf temperature measurement was lower on genotype 9 than on the other genotypes.While the highest fruit length value was measured in genotype 1,genotype 8 was superior in the main stem diameter,fruit diameter,and the number of nodes among the remaining plant materials.In terms of yield,it was determined that the interaction between genotype 2 and the commercial algae resulted in the best outcomes.In addition,the results of the genetic evaluation revealed that the materials used were not genetically distant from each other and more detailed genetic evaluations are needed.The molecular kinship analysis revealed that the genotypes used in the study were divided into three distinct groups,with individuals within each group exhibiting a high degree of relatedness to one another.As a result of the study,it was found that the application of microalgae had significant effects on improving the drought tolerance of Cucumis melo subsp.agrestis var.conomon genotypes.展开更多
Stigma color plays an important role in pollination.In nature,melon(Cucumis melo L.)stigmas are either yellow or green;however,a review of the literature found no report on how stigma color affects pollination and fru...Stigma color plays an important role in pollination.In nature,melon(Cucumis melo L.)stigmas are either yellow or green;however,a review of the literature found no report on how stigma color affects pollination and fruit development in melon.Here,we used an F_(2)melon population derived from a cross between‘MR-1’(P_(1),with green stigmas)and‘M1–32’(P_(2),with yellow stigmas),and performed genetic analysis and mapping.The results of bulked segregant analysis allowed the identification of genetic loci controlling stigma color on chromosomes 6 and 8.An F2 population consisting of 150 individuals was used for initial mapping.A genetic map of 304.17 cM was constructed using 37 cleaved amplified polymorphism sequence(CAPS)markers.We identified one major quantitative trait locus(QTL)and one minor QTL for stigma color.The major QTL GS8.1 was further mapped to a 4.13 cM interval between CAPS markers 8C-10 and 8C-16,which explained 27.04%of the phenotypic variation.In addition,GS6.1 was mapped between E-49 and 6A-7,explaining 18.6%of the phenotypic variation.This study provides a theoretical basis for the fine mapping and cloning of melon genes controlling stigma color.展开更多
The use of organic waste for the preparation of seedling substrates is an important environmental and economic option. In this perspective, substrates using biochar emerges as an alternative for seedling production du...The use of organic waste for the preparation of seedling substrates is an important environmental and economic option. In this perspective, substrates using biochar emerges as an alternative for seedling production due to their favorable physical and chemical characteristics. The present study aimed to evaluate the efficiency of doses of poultry litter biochar as a substrate constituent for the production and quality of the seedlings. The work was conducted in a semi protected environment, belonging to the Federal University of Campina Grande—UFCG. The statistical design used was completely randomized in a 6 × 2 factorial scheme, consisting of 6 doses of biochar (0, 4, 8, 12, 16 and 20 t<span style="white-space:nowrap;">∙</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) and two varieties of melon (Yellow and Hales Best Jumbo) with 4 repetitions totaling 48 experimental units. The fresh and dry plant phytomass mass (aerial, roots and total), root length and the quality of seedlings were evaluated. It was concluded that the addition of poultry litter biochar to the substrate was beneficial, promoting an increase in the analyzed seedling variables, being the ideal dose for good development of melon seedlings 12 t<span style="white-space:nowrap;">∙</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>. The Yellow variety presented a better response than the Hales Best Jumbo to the charcoal application. Considering the advantages of the use of poultry litter biochar on the substrate composition, found in the present study, its utilization constitutes a viable alternative for the development of melon seedlings and for the environmental disposal of the poultry litter.展开更多
Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene...Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.展开更多
In the present research work, a non-edible oil source Cucumis melo var. agrestis (wild melon) was systematically identified and studied for biodiesel production and its characterization. The extracted oil was 29.1% ...In the present research work, a non-edible oil source Cucumis melo var. agrestis (wild melon) was systematically identified and studied for biodiesel production and its characterization. The extracted oil was 29.1% of total dry seed weight. The free fatty acid value of the oil was found to be 0.64%, and the single-step alkaline transesterification method was used for conversion of fatty acids into their respective methyl esters. The maximum conversion efficiency of fatty acids was obtained at 0.4 wt% NaOH (used as catalyst), 30% (methanol to oil, v/v) methanol amount, 60 ℃ reaction temperature, 600-rpm agitation rate and 60-min reaction time. Under these optimal conditions, the conversion efficiency of fatty acid was 92%. However, in the case of KOH as catalyst, the highest conversion (85%) of fatty acids was obtained at 40% methanol to oil ratio, 1.28 wt% KOH, 60 ℃ reaction temperature, 600-rpm agitation rate and 45 min of reaction time. Qualitatively, biodiesel was characterized through Fourier transform infrared spectroscopy (FFIR) and gas chromatography and mass spectroscopy (GC-MS). FTIR results demonstrated a strong peak at 1742 cm-1, showing carbonyl groups (C=O) of methyl esters. However, GC-MS results showed the presence of twelve methyl esters comprised of lauric acid, myristic acid, palmitic acid, non-decanoic acid, hexadecanoic acid, octadecadienoic acid and octadecynoic acid. The fuel properties were found to fall within the range recommended by the international biodiesel standard, i.e., American Society of Testing Materials (ASTM): flash point of 91℃, density of 0.873 kg/L, viscosity of 5.35 cSt, pour point of - 13 ℃, cloud point of -10 ℃, total acid number of 0.242 mg KOH/g and sulfur content of 0.0043 wt%. The present work concluded the potential of wild melon seed oil as excellent non-edible source of bioenergy.展开更多
Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during ...Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during plant development.In cultivar experiments,a high-resolution wireless vision sensor network has been developed to realize non-contact automatic uninterrupted measurement of the fruit shape micro-change (fruit size,color,and net).Results showed that the fruit swelling process (vertical and horizontal diameters) exhibited a slow-rapid-slow pattern,which could be well described with a logistic curve against growing degree days (GDD);fruit color changes based on the RGB values could be represented by quadratic relationship to cumulative GDD;the fruit net changes over growth progress could be partitioned into three phases according to the time interval.The first phase was from 1 to 30 days after pollination (DAP),in which the vertical stripe appeared at fruit middle part and the horizontal stripe at fruit petiole and hilum part as well;the second phase was from 30 to 40 DAP,the horizontal stripe occurred at fruit middle part and the net was formed;the third phase was the process started from 40 DAP,the netted breadth and thickness were gradually increased.The model was validated with the independent data from the experiment,and the mean RMSE (root mean square error) of fruit were 0.36 and 0.28 cm for vertical and horizontal diameters,11.9 for fruit color,and 0.45 cm for stripe length and diameter at varied GDD,respectively.This work is beneficial to a reliable foundation for study the relationship between morphological formation and physiological change of the melon fruit internally and then realize the intelligent precision management to improve the yield and quality of greenhouse melon production.展开更多
This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of i...This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of its synthetic analogue has been developed. Also, a route for the synthesis of para pheromone, raspberry ketone, has been proposed.展开更多
With different varieties of facility Hami melon(Cucumis melo var. sacchairinus) as test materials, the effects of meteorological conditions on the yield and quality of different varieties of facility Hami melon were a...With different varieties of facility Hami melon(Cucumis melo var. sacchairinus) as test materials, the effects of meteorological conditions on the yield and quality of different varieties of facility Hami melon were analyzed. The results showed that among the yield and quality traits of melon, the variation degree of average single melon weight was the highest, and the coefficient of variation was 33.05%. The variation degree of leaf area index was the lowest, and the coefficient of variation was 11.00%. Through the correlation analysis of meteorological factors with the yield and quality of facility Hami melon, it was found that the quality traits of facility Hami melon were significantly positively correlated with maximum temperature and sunshine duration, and significantly negatively correlated with precipitation. The yield traits were positively correlated with maximum temperature, sunshine duration and precipitation.展开更多
This study aimed at evaluating the quality of melon Pele de Sapo “Mabel” and Yellow melon “UFERSA-05” minimally processed preserved in different packages. The fruits were harvested at Mossoró-RN and transport...This study aimed at evaluating the quality of melon Pele de Sapo “Mabel” and Yellow melon “UFERSA-05” minimally processed preserved in different packages. The fruits were harvested at Mossoró-RN and transported to Serra Talhada-PE. In the first study, melon fruit Piel de Sapo “Mabel” was selected, washed, weighed, cooled, peeled, cut into cube shape, sanitized in chlorine solution, drained, packaged in rigid polypropylene tray, sealed with polypropylene film or polypropylene rigid cap and kept for 8 days at 8℃. In the second study, fruits of yellow melon “UFERSA-05” and Pele de Sapo “Mabel” were minimally processed and kept in rigid polypropylene tray, sealed with polypropylene film and stored for 8 days at 8℃. There was no significant interaction between packaging (sealed with film and polypropylene cover) and period of conservation, for pH, total titratable acidity (TTA), total soluble solids (TSS) and Loss of fresh mass (LFM) for Melon “Mabel”. While there was significant interaction between types of melon (“UFERSA-05” and “Mabel”) and storage period (0, 2, 4, 6, and 8 days) for pH, TTA and TSS. In sensory evaluation were noticeable changes in appearance, flavor, aroma and flesh firmness, characterized by translucency, alcoholic aroma and softening in “Mabel” melon kept in tray with lid. Melon “UFERSA-05” showed lower pH, total soluble solids, total soluble sugars, PME activity, lack of translucency high flesh firmness compared to “Mabel” melon during storage. The high levels of sugars in melon “Mabel” may be related to the incidence of translucency, which was not observed in “UFERSA-05” melon, with a strong potential to minimal processing.展开更多
为了探析甜瓜(Cucumis melo L.)响应涝害胁迫的分子机制,采用转录组和蛋白组学方法研究了甜瓜耐涝型材料L45和涝敏感型材料L39在正常培养和涝害胁迫处理条件下的差异表达基因和蛋白。结果表明,L39-W vs L39-C的差异表达基因数为3532个,...为了探析甜瓜(Cucumis melo L.)响应涝害胁迫的分子机制,采用转录组和蛋白组学方法研究了甜瓜耐涝型材料L45和涝敏感型材料L39在正常培养和涝害胁迫处理条件下的差异表达基因和蛋白。结果表明,L39-W vs L39-C的差异表达基因数为3532个,差异表达蛋白数为105个;L45-W vs L45-C的差异表达基因数为1842个,差异表达蛋白数为38个。转录组与蛋白组联合分析发现,L39-W vs L39-C中38个基因在mRNA和蛋白质水平上联合上调表达,12个基因联合下调表达;L45-W vs L45-C中7个基因联合上调表达,3个基因联合下调表达。KEGG显著性富集分析结果发现,L39-W vs L39-C中联合上调表达的基因显著富集在类黄酮生物合成、苯丙烷生物合成、苯丙氨酸代谢、缬氨酸、亮氨酸和异亮氨酸生物合成、精氨酸和脯氨酸代谢等;而L45-W vs L45-C中联合上调表达的基因显著富集在α-亚麻酸代谢、类黄酮生物合成、苯丙烷生物合成、亚油酸代谢等。本研究联合转录组与蛋白组数据进行了差异表达基因与蛋白分析,为进一步挖掘甜瓜响应涝害胁迫的关键基因及通路奠定了一定基础。展开更多
基金funded by a fellowship from the China Scholarship Council(Grant No.201908140029)。
文摘Melon(Cucumis melo L.)production is often restricted by a plethora of pests and diseases,including powdery mildew and downy mildew caused respectively by the fungal species Podosphaera xanthii/Golovinomyces orontii and oomycete species Pseudoperonospora cubensis.Many efforts have been directed on identification of resistant sources by screening(wild)melon germplasm.In the current review,we summarized such efforts from various publications of the last 50 plus years.Resistance to powdery mildew has been identified in 239 melon accessions and downy mildew resistance in 452 accessions of both C.melo and the wild relative species C.figarei.Among the resistance sources,C.melo var.cantalupensis accessions PMR 45,PMR 5,PMR 6,and WMR 29 as well as C.melo var.momordica accessions PI 124111,PI 124112,and PI 414723 have been considered as the most valuable germplasm because multiple resistance genes have been identified from these accessions and are widely used in melon resistance breeding.Further genetic mapping in a number of resistant sources has enabled identification of 25 dominant genes,two recessive genes and seven QTLs conferring powdery mildew resistance,as well as eight dominant genes and 11 QTLs for downy mildew resistances.Based on the reported sequences of associated markers,we anchored physically(many of)these genes and QTLs to chromosomes of the melon cv.DHL92 genome.In addition to presenting a comprehensive overview on powdery mildew and downy mildew resistance in(wild)melon germplasm,we suggest strategies aiming at breeding melon with durable and broad-spectrum resistance to pathogens and pests.
文摘A collection of melon (Cucumis melo L.) from Kerala state, Southern India, consisting of thirty three accessions was evaluated for 22 quantitative and 14 qualitative characteristics to estimate the phenotypic diversity. The collection showed appreciable phenotypic diversity in fruit related traits. Principal component analysis (PCA) was performed to determine the relationships among the populations. The analysis revealed that the variations in stem hair length, number of nodes per plant on 60th day, fruit shape, fruit length, fruit weight, fruit colour at ripening, fruit rind hardness, flesh colour, flesh firmness, quality of flesh, shelf life, seed colour were the principle characters to discriminate melon accessions evaluated in the present study. When the 33 populations were plotted on the first two principal components, accounting for 49.97% of the total variation, three clusters were identified, accounting for 36 morphological attributes used in the study. The greater part of diversity was accounted for fruit diameter, fruit weight, fruit length and width, fruit cavity length and diameter, seed length and colour. Flesh area of fruit, flesh thickness, leaf size, seed weight, seed index did not account for variation in the first six principal components of the melon collection. Scatter diagram segregated the acidulus and momordica into different clusters. This evaluation of fruit trait variability can assist geneticists and breeders to identify populations with desirable characteristics for inclusion in various breeding programmes.
基金supported by the Scientific Research Coordinatorship of Siirt University with the Project Number 2018-SİÜFEB-022.
文摘Due to climate change,it is necessary to develop plant varieties that are resilient to climate conditions and resistant to abiotic and biotic stresses.The use of microalgae,which are microorganisms that contain carbohydrates,proteins,lipids,and vitamins,against drought tolerance is a new approach.The aim of the current study was to determine the drought-related mechanisms in the conomon melon genotype and develop drought-tolerant melon cultivars.Morphological,physiological,pomological,and molecular analyses were carried out on the algae-treated genotypes.It has been determined that commercial algae application provides the best results in leaf temperature,leaf relative water contents(LRWC),plant height,fruit length,fruit diameter,and yield,while Cag Cag(a special river in the region)stream algae application gives better results in main stem diameter.It was determined that the number of nodes in the control(without algae)plots was higher than in the other two treatments.Yield and LRWC and plant height values of genotype 7 were the best values among other genotypes.The leaf temperature measurement was lower on genotype 9 than on the other genotypes.While the highest fruit length value was measured in genotype 1,genotype 8 was superior in the main stem diameter,fruit diameter,and the number of nodes among the remaining plant materials.In terms of yield,it was determined that the interaction between genotype 2 and the commercial algae resulted in the best outcomes.In addition,the results of the genetic evaluation revealed that the materials used were not genetically distant from each other and more detailed genetic evaluations are needed.The molecular kinship analysis revealed that the genotypes used in the study were divided into three distinct groups,with individuals within each group exhibiting a high degree of relatedness to one another.As a result of the study,it was found that the application of microalgae had significant effects on improving the drought tolerance of Cucumis melo subsp.agrestis var.conomon genotypes.
基金This research was funded by the National Nature Science Foundation of China(Grant No.31772331)the China Agriculture Research System(Grant No.CARS-25).
文摘Stigma color plays an important role in pollination.In nature,melon(Cucumis melo L.)stigmas are either yellow or green;however,a review of the literature found no report on how stigma color affects pollination and fruit development in melon.Here,we used an F_(2)melon population derived from a cross between‘MR-1’(P_(1),with green stigmas)and‘M1–32’(P_(2),with yellow stigmas),and performed genetic analysis and mapping.The results of bulked segregant analysis allowed the identification of genetic loci controlling stigma color on chromosomes 6 and 8.An F2 population consisting of 150 individuals was used for initial mapping.A genetic map of 304.17 cM was constructed using 37 cleaved amplified polymorphism sequence(CAPS)markers.We identified one major quantitative trait locus(QTL)and one minor QTL for stigma color.The major QTL GS8.1 was further mapped to a 4.13 cM interval between CAPS markers 8C-10 and 8C-16,which explained 27.04%of the phenotypic variation.In addition,GS6.1 was mapped between E-49 and 6A-7,explaining 18.6%of the phenotypic variation.This study provides a theoretical basis for the fine mapping and cloning of melon genes controlling stigma color.
文摘The use of organic waste for the preparation of seedling substrates is an important environmental and economic option. In this perspective, substrates using biochar emerges as an alternative for seedling production due to their favorable physical and chemical characteristics. The present study aimed to evaluate the efficiency of doses of poultry litter biochar as a substrate constituent for the production and quality of the seedlings. The work was conducted in a semi protected environment, belonging to the Federal University of Campina Grande—UFCG. The statistical design used was completely randomized in a 6 × 2 factorial scheme, consisting of 6 doses of biochar (0, 4, 8, 12, 16 and 20 t<span style="white-space:nowrap;">∙</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) and two varieties of melon (Yellow and Hales Best Jumbo) with 4 repetitions totaling 48 experimental units. The fresh and dry plant phytomass mass (aerial, roots and total), root length and the quality of seedlings were evaluated. It was concluded that the addition of poultry litter biochar to the substrate was beneficial, promoting an increase in the analyzed seedling variables, being the ideal dose for good development of melon seedlings 12 t<span style="white-space:nowrap;">∙</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>. The Yellow variety presented a better response than the Hales Best Jumbo to the charcoal application. Considering the advantages of the use of poultry litter biochar on the substrate composition, found in the present study, its utilization constitutes a viable alternative for the development of melon seedlings and for the environmental disposal of the poultry litter.
基金supported by the National Natural Science Foundation of China(30960159)the Specialized Research Foundation for the Doctoral Program of Higher Education(200801260002)
文摘Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.
文摘In the present research work, a non-edible oil source Cucumis melo var. agrestis (wild melon) was systematically identified and studied for biodiesel production and its characterization. The extracted oil was 29.1% of total dry seed weight. The free fatty acid value of the oil was found to be 0.64%, and the single-step alkaline transesterification method was used for conversion of fatty acids into their respective methyl esters. The maximum conversion efficiency of fatty acids was obtained at 0.4 wt% NaOH (used as catalyst), 30% (methanol to oil, v/v) methanol amount, 60 ℃ reaction temperature, 600-rpm agitation rate and 60-min reaction time. Under these optimal conditions, the conversion efficiency of fatty acid was 92%. However, in the case of KOH as catalyst, the highest conversion (85%) of fatty acids was obtained at 40% methanol to oil ratio, 1.28 wt% KOH, 60 ℃ reaction temperature, 600-rpm agitation rate and 45 min of reaction time. Qualitatively, biodiesel was characterized through Fourier transform infrared spectroscopy (FFIR) and gas chromatography and mass spectroscopy (GC-MS). FTIR results demonstrated a strong peak at 1742 cm-1, showing carbonyl groups (C=O) of methyl esters. However, GC-MS results showed the presence of twelve methyl esters comprised of lauric acid, myristic acid, palmitic acid, non-decanoic acid, hexadecanoic acid, octadecadienoic acid and octadecynoic acid. The fuel properties were found to fall within the range recommended by the international biodiesel standard, i.e., American Society of Testing Materials (ASTM): flash point of 91℃, density of 0.873 kg/L, viscosity of 5.35 cSt, pour point of - 13 ℃, cloud point of -10 ℃, total acid number of 0.242 mg KOH/g and sulfur content of 0.0043 wt%. The present work concluded the potential of wild melon seed oil as excellent non-edible source of bioenergy.
基金funded by the National Natural Science Foundation of China (31000669)the Shanghai Leading Academic Discipline Project,China (B209)
文摘Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during plant development.In cultivar experiments,a high-resolution wireless vision sensor network has been developed to realize non-contact automatic uninterrupted measurement of the fruit shape micro-change (fruit size,color,and net).Results showed that the fruit swelling process (vertical and horizontal diameters) exhibited a slow-rapid-slow pattern,which could be well described with a logistic curve against growing degree days (GDD);fruit color changes based on the RGB values could be represented by quadratic relationship to cumulative GDD;the fruit net changes over growth progress could be partitioned into three phases according to the time interval.The first phase was from 1 to 30 days after pollination (DAP),in which the vertical stripe appeared at fruit middle part and the horizontal stripe at fruit petiole and hilum part as well;the second phase was from 30 to 40 DAP,the horizontal stripe occurred at fruit middle part and the net was formed;the third phase was the process started from 40 DAP,the netted breadth and thickness were gradually increased.The model was validated with the independent data from the experiment,and the mean RMSE (root mean square error) of fruit were 0.36 and 0.28 cm for vertical and horizontal diameters,11.9 for fruit color,and 0.45 cm for stripe length and diameter at varied GDD,respectively.This work is beneficial to a reliable foundation for study the relationship between morphological formation and physiological change of the melon fruit internally and then realize the intelligent precision management to improve the yield and quality of greenhouse melon production.
文摘This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of its synthetic analogue has been developed. Also, a route for the synthesis of para pheromone, raspberry ketone, has been proposed.
基金Supported by Project of Shandong Institute of Modern Agriculture of Zhejiang University for Serving Local Economic Development (ZDNY-2020-FWLY2006)。
文摘With different varieties of facility Hami melon(Cucumis melo var. sacchairinus) as test materials, the effects of meteorological conditions on the yield and quality of different varieties of facility Hami melon were analyzed. The results showed that among the yield and quality traits of melon, the variation degree of average single melon weight was the highest, and the coefficient of variation was 33.05%. The variation degree of leaf area index was the lowest, and the coefficient of variation was 11.00%. Through the correlation analysis of meteorological factors with the yield and quality of facility Hami melon, it was found that the quality traits of facility Hami melon were significantly positively correlated with maximum temperature and sunshine duration, and significantly negatively correlated with precipitation. The yield traits were positively correlated with maximum temperature, sunshine duration and precipitation.
基金The authors thank the Universidade Federal Rural do Pernambuco,the Universidade Federal Rural do Semiárido,CNPq,FACEPE and CAPES for the financial support.
文摘This study aimed at evaluating the quality of melon Pele de Sapo “Mabel” and Yellow melon “UFERSA-05” minimally processed preserved in different packages. The fruits were harvested at Mossoró-RN and transported to Serra Talhada-PE. In the first study, melon fruit Piel de Sapo “Mabel” was selected, washed, weighed, cooled, peeled, cut into cube shape, sanitized in chlorine solution, drained, packaged in rigid polypropylene tray, sealed with polypropylene film or polypropylene rigid cap and kept for 8 days at 8℃. In the second study, fruits of yellow melon “UFERSA-05” and Pele de Sapo “Mabel” were minimally processed and kept in rigid polypropylene tray, sealed with polypropylene film and stored for 8 days at 8℃. There was no significant interaction between packaging (sealed with film and polypropylene cover) and period of conservation, for pH, total titratable acidity (TTA), total soluble solids (TSS) and Loss of fresh mass (LFM) for Melon “Mabel”. While there was significant interaction between types of melon (“UFERSA-05” and “Mabel”) and storage period (0, 2, 4, 6, and 8 days) for pH, TTA and TSS. In sensory evaluation were noticeable changes in appearance, flavor, aroma and flesh firmness, characterized by translucency, alcoholic aroma and softening in “Mabel” melon kept in tray with lid. Melon “UFERSA-05” showed lower pH, total soluble solids, total soluble sugars, PME activity, lack of translucency high flesh firmness compared to “Mabel” melon during storage. The high levels of sugars in melon “Mabel” may be related to the incidence of translucency, which was not observed in “UFERSA-05” melon, with a strong potential to minimal processing.
文摘为了探析甜瓜(Cucumis melo L.)响应涝害胁迫的分子机制,采用转录组和蛋白组学方法研究了甜瓜耐涝型材料L45和涝敏感型材料L39在正常培养和涝害胁迫处理条件下的差异表达基因和蛋白。结果表明,L39-W vs L39-C的差异表达基因数为3532个,差异表达蛋白数为105个;L45-W vs L45-C的差异表达基因数为1842个,差异表达蛋白数为38个。转录组与蛋白组联合分析发现,L39-W vs L39-C中38个基因在mRNA和蛋白质水平上联合上调表达,12个基因联合下调表达;L45-W vs L45-C中7个基因联合上调表达,3个基因联合下调表达。KEGG显著性富集分析结果发现,L39-W vs L39-C中联合上调表达的基因显著富集在类黄酮生物合成、苯丙烷生物合成、苯丙氨酸代谢、缬氨酸、亮氨酸和异亮氨酸生物合成、精氨酸和脯氨酸代谢等;而L45-W vs L45-C中联合上调表达的基因显著富集在α-亚麻酸代谢、类黄酮生物合成、苯丙烷生物合成、亚油酸代谢等。本研究联合转录组与蛋白组数据进行了差异表达基因与蛋白分析,为进一步挖掘甜瓜响应涝害胁迫的关键基因及通路奠定了一定基础。