A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularit...A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularity error. The finely-designed GA (FDGA)characterized dynamical bisexual recombination and Gaussian mutation. The mathematical model of thenonlinear problem is given. The implementation details in FDGA are described such as the crossoveror recombination mechanism which utilized a bisexual reproduction scheme and the elitist reservationmethod; and the adaptive mutation which used the Gaussian probability distribution to determine thevalues of the offspring produced by mutation mechanism. The examples are provided to verify thedesigned FDGA. The computation results indicate that the FDGA works very well in the field of formerror evaluation such as circularity evaluation.展开更多
The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study...The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA.展开更多
Based on the thermal stress distribution for functionally gradient material (FGM) plates, a Genetic Algorithm (GA) method for the thermal stresses optimum design of FGM plate with computer technologies is given. The m...Based on the thermal stress distribution for functionally gradient material (FGM) plates, a Genetic Algorithm (GA) method for the thermal stresses optimum design of FGM plate with computer technologies is given. The minimum thermal stresses combination distribution for FGM is obtained.展开更多
A local minimum is frequently encountered in the training of back propagation neural networks (BPNN), which sharply slows the training process. In this paper, an analysis of the formation of local minima is presented,...A local minimum is frequently encountered in the training of back propagation neural networks (BPNN), which sharply slows the training process. In this paper, an analysis of the formation of local minima is presented, and an improved genetic algorithm (GA) is introduced to overcome local minima. The Sigmoid function is generally used as the activation function of BPNN nodes. It is the flat characteristic of the Sigmoid function that results in the formation of local minima. In the improved GA, pertinent modifications are made to the evaluation function and the mutation model. The evaluation of the solution is associated with both the training error and gradient. The sensitivity of the error function to network parameters is used to form a self adapting mutation model. An example of industrial application shows the advantage of the improved GA to overcome local minima.展开更多
This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear c...This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB.展开更多
基金The project is supported by National Natural Science Foundation of China(No.59975025).
文摘A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularity error. The finely-designed GA (FDGA)characterized dynamical bisexual recombination and Gaussian mutation. The mathematical model of thenonlinear problem is given. The implementation details in FDGA are described such as the crossoveror recombination mechanism which utilized a bisexual reproduction scheme and the elitist reservationmethod; and the adaptive mutation which used the Gaussian probability distribution to determine thevalues of the offspring produced by mutation mechanism. The examples are provided to verify thedesigned FDGA. The computation results indicate that the FDGA works very well in the field of formerror evaluation such as circularity evaluation.
文摘The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA.
文摘Based on the thermal stress distribution for functionally gradient material (FGM) plates, a Genetic Algorithm (GA) method for the thermal stresses optimum design of FGM plate with computer technologies is given. The minimum thermal stresses combination distribution for FGM is obtained.
文摘A local minimum is frequently encountered in the training of back propagation neural networks (BPNN), which sharply slows the training process. In this paper, an analysis of the formation of local minima is presented, and an improved genetic algorithm (GA) is introduced to overcome local minima. The Sigmoid function is generally used as the activation function of BPNN nodes. It is the flat characteristic of the Sigmoid function that results in the formation of local minima. In the improved GA, pertinent modifications are made to the evaluation function and the mutation model. The evaluation of the solution is associated with both the training error and gradient. The sensitivity of the error function to network parameters is used to form a self adapting mutation model. An example of industrial application shows the advantage of the improved GA to overcome local minima.
文摘This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB.