BACKGROUND Adaptor protein,phosphotyrosine interacting with PH domain and leucine zipper 1(APPL1)plays a crucial role in regulating insulin signaling and glucose metabolism.Mutations in the APPL1 gene have been associ...BACKGROUND Adaptor protein,phosphotyrosine interacting with PH domain and leucine zipper 1(APPL1)plays a crucial role in regulating insulin signaling and glucose metabolism.Mutations in the APPL1 gene have been associated with the development of maturity-onset diabetes of the young type 14(MODY14).Currently,only two mutations[c.1655T>A(p.Leu552*)and c.281G>A p.(Asp94Asn)]have been identified in association with this disease.Given the limited understanding of MODY14,it is imperative to identify additional cases and carry out comprehensive research on MODY14 and APPL1 mutations.AIM To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to characterize the functional role of the APPL1 domain.METHODS Patients exhibiting clinical signs and a medical history suggestive of MODY were screened for the study.Whole exome sequencing was performed on the patients as well as their family members.The pathogenicity of the identified APPL1 variants was predicted on the basis of bioinformatics analysis.In addition,the pathogenicity of the novel APPL1 variant was preliminarily evaluated through in vitro functional experiments.Finally,the impact of these variants on APPL1 protein expression and the insulin pathway were assessed,and the potential mechanism underlying the interaction between the APPL1 protein and the insulin receptor was further explored.RESULTS A total of five novel mutations were identified,including four missense mutations(Asp632Tyr,Arg633His,Arg532Gln,and Ile642Met)and one intronic mutation(1153-16A>T).Pathogenicity prediction analysis revealed that the Arg532Gln was pathogenic across all predictions.The Asp632Tyr and Arg633His variants also had pathogenicity based on MutationTaster.In addition,multiple alignment of amino acid sequences showed that the Arg532Gln,Asp632Tyr,and Arg633His variants were conserved across different species.Moreover,in in vitro functional experiments,both the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were found to downregulate the expression of APPL1 on both protein and mRNA levels,indicating their pathogenic nature.Therefore,based on the patient’s clinical and family history,combined with the results from bioinformatics analysis and functional experiment,the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were classified as pathogenic mutations.Importantly,all these mutations were located within the phosphotyrosinebinding domain of APPL1,which plays a critical role in the insulin sensitization effect.CONCLUSION This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a potential target for the diagnosis and treatment of the disease.展开更多
BACKGROUND Chronic myelomonocytic leukemia(CMML),a rare clonal hematopoietic stem cell disorder characterized by myelodysplastic syndrome and myeloproliferative neoplasms,has a generally poor prognosis,and easily prog...BACKGROUND Chronic myelomonocytic leukemia(CMML),a rare clonal hematopoietic stem cell disorder characterized by myelodysplastic syndrome and myeloproliferative neoplasms,has a generally poor prognosis,and easily progresses to acute myeloid leukemia.The simultaneous incidence of hematologic malignancies and solid tumors is extremely low,and CMML coinciding with lung malignancies is even rarer.Here,we report a case of CMML,with ASXL1 and EZH2 gene mutations,combined with non-small cell lung cancer(lung squamous cell carcinoma).CASE SUMMARY A 63-year-old male,suffering from toothache accompanied by coughing,sputum,and bloody sputum for three months,was given a blood test after experiencing continuous bleeding resulting from a tooth extraction at a local hospital.Based on morphological results,the patient was diagnosed with CMML and bronchoscopy was performed in situ to confirm the diagnosis of squamous cell carcinoma in the lower lobe of the lung.After receiving azacitidine,programmed cell death protein 1,and platinum-based chemotherapy drugs,the patient developed severe myelosuppression and eventually fatal leukocyte stasis and dyspnea.CONCLUSION During the treatment and observation of CMML and be vigilant of the growth of multiple primary malignant tumors.展开更多
Nurr1 defects could in part underlie Parkinson’s disease pathogenesis,and Nurr1 gene polymorphism has been found in Caucasian patients with Parkinson’s disease.In this study,heteroduplex technology was applied to co...Nurr1 defects could in part underlie Parkinson’s disease pathogenesis,and Nurr1 gene polymorphism has been found in Caucasian patients with Parkinson’s disease.In this study,heteroduplex technology was applied to compare the DNA sequences of eight exons of Nurr1 among 200 sporadic Parkinson’s disease patients and 200 healthy controls in the Han population in the Hubei province,China.One allele amplified from exon 3 of Nurr1 was polymorphic in five Parkinson’s disease patients(2.5%,5/200),and two individuals had a polymorphic allele amplified from exon 2 (1%,2/200).The anomalous electrophoresis fragment in exon 3 of Nurr1 gene contained a 709C/A missense mutation,and a polymorphic single nucleotide polymorphism at 388G/A was identified in exon 2.Compared with the control group,the Nurr1 gene expression level in the Parkinson’s disease group was decreased,and the Nurr1 gene expression levels in Parkinson’s disease patients carrying the polymorphisms at exons 2 and 3 were significantly decreased.Our data indicate that the single nucleotide polymorphism 388G/A in exon 2 and the 709C/A missense mutation in exon 3 of the Nurr1 gene in the Chinese population might affect the pathogenesis of Parkinson’s disease.展开更多
BACKGROUND The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis(HS)in children.We also hope to ...BACKGROUND The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis(HS)in children.We also hope to promote the application of gene detection technology in children with HS,with the goals of identifying more related gene mutations,supporting the acquisition of improved molecular genetic information to further reveal the pathogenesis of HS in children,and providing important guidance for the diagnosis,treatment,and prevention of HS in children.CASE SUMMARY A 1-year and 5-month-old patient presented jaundice during the neonatal period,mild anemia 8 months later,splenic enlargement at 1 year and 5 months,and brittle red blood cell permeability.Genetic testing was performed on the patient,their parents,and sister.Swiss Model software was used to predict the protein structure of complex heterozygous mutations in ANK1 and SPTA1.Genetic testing revealed that the patient harbored a new mutation in the ANK1 gene from the father and a mutation in the SPTA1 gene from the mother.Combined with the clinical symptoms of the children,it is suggested that the newly discovered complex heterozygous mutations of ANK1 and SPTA1 may be the cause,providing important guidance for revealing the pathogenesis,diagnosis,treatment,and promotion of gene detection technology in children with HS.CONCLUSION This case involves an unreported complex heterozygous mutation of ANK1 and SPTA1,which provides a reference for exploring HS.展开更多
Von Meyenburg complexes(VMCs) are a rare type of ductal plate malformation. We herein report two Chinese families with VMCs, and the suspicious gene mutation of this disease. Proband A was a 62-year-old woman with abn...Von Meyenburg complexes(VMCs) are a rare type of ductal plate malformation. We herein report two Chinese families with VMCs, and the suspicious gene mutation of this disease. Proband A was a 62-year-old woman with abnormal echographic presentation of the liver. She received magnetic resonance imaging(MRI) examination and liver biopsy, and the results showed she had VMCs. Histologically proved hepatocellular carcinoma was found 1 year after the diagnosis of VMCs. Proband B was a 57-year-old woman with intrahepatic diffuselesions displayed by abdominal ultrasonography. Her final diagnoses were VMCs, congenital hepatic fibrosis, and hepatitis B surface e antigen-negative chronic hepatitis B after a series of examinations. Then, all the family members of both proband A and proband B were screened for VMCs by MRI or ultrasonography. The results showed that four of the 11 family members from two families, including two males and two females, were diagnosed with VMCs. DNA samples were extracted from the peripheral blood of those 11 individuals of two VMCs pedigrees and subjected to polymerase chain reaction amplification of the polycystic kidney and hepatic disease 1(PKHD1) gene. Two different mutation loci were identified. Heterozygous mutations located in exon 32(c.4280 delG, p.Gly1427 ValfsX 6) in family A and exon 28(c.3118 C>T, p.Arg1040 Ter) in family B were detected. We speculate that PKHD1 gene mutations may be responsible for the development of VMCs.展开更多
The influenza A viruses have three gene segments, M, NS, and PB1, which code for more than one protein. The overlapping genes from the same segment entail their interdependence, which could be reflected in the evoluti...The influenza A viruses have three gene segments, M, NS, and PB1, which code for more than one protein. The overlapping genes from the same segment entail their interdependence, which could be reflected in the evolutionary constraints, host distinction, and co-mutations of influenza. Most previous studies of overlapping genes focused on their unique evolutionary constraints, and very little was achieved to assess the potential impact of the overlap on other biological aspects of influenza. In this study, our aim was to explore the mutual dependence in host differentiation and co-mutations in M, NS, and PB1 of avian, human, 2009 H1N1, and swine viruses, with Random Forests, information entropy, and mutual information. The host markers and highly co-mutated individual sites and site pairs (P values < 0.035) in the three gene segments were identified with their relative significance between the overlapping genes calculated. Further, Random Forests predicted that among the three stop codons in the current PB1-F2 gene of 2009 H1N1, the significance of a mutation at these sites for host differentiation was, in order from most to least, that at 12, 58, and 88, i.e., the closer to the start of the gene the more important the mutation was. Finally, our sequence analysis surprisingly revealed that the full-length PB1-F2, if the three stop codons were all mutated, would function more as a swine protein than a human protein, although the PB1 of 2009 H1N1 was derived from human H3N2.展开更多
AIM: To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma(PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features.METHODS: The DNA ...AIM: To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma(PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features.METHODS: The DNA from the peripheral blood of 13 congenital glaucoma patients and 50 ethnically matched healthy controls from the affiliated hospital of Qingdao University were extracted. The coding region of the CYP1B1 gene was amplified by PCR and direct DNA sequencing was performed. Disease causing-variants were analyzed by comparing the sequences and the structures of wild type and mutant CYP1B1 proteins by PyMOL software.RESULTS: Two missense mutations, including A330 F caused by c.988 G>T&c.989 C>T, and R390H caused by c.1169 G>A, were identified in one of the 13 PCG patients analyzed in our study. A330F mutation was observed to be novel in the Chinese Han population, which dramatically altered the protein structure of CYP1B1 gene, including the changes in the ligand-binding pocket. Furthermore, R390H mutation caused the changes in heme-protein binding site of this gene. In addition, the clinical phenotype displayed by PCG patient with these mutations was more pronounced than other PCG patients without these mutations. Multiple surgeries and combined drug treatment were not effective in reducing the elevated intraocular pressure in this patient.CONCLUSION: A novel A330F mutation is identified in the CYP1B1 gene of Chinese PCG patient. Moreover, in combination with other mutation R390H, this PCG patient shows significant difference in the CYP1B1 protein structure, which may specifically contribute to severe glaucomatous phenotype.展开更多
BACKGROUND The VPS33B(OMIM:608552)gene is located on chromosome 15q26.1.We found a female infant with autosomal recessive arthrogryposis,renal dysfunction and cholestasis syndrome 1(ARCS1)caused by mutation in VPS33B....BACKGROUND The VPS33B(OMIM:608552)gene is located on chromosome 15q26.1.We found a female infant with autosomal recessive arthrogryposis,renal dysfunction and cholestasis syndrome 1(ARCS1)caused by mutation in VPS33B.The child was diagnosed with ARCS1(OMIM:208085)after the whole exome sequencing revealed two heterozygous mutations(c.96+1G>C,c.242delT)in the VPS33B gene.CASE SUMMARY We report a Chinese female infant with neonatal cholestasis disorder,who was eventually diagnosed with ARCS1 by genetic analysis.Genetic testing revealed two new mutations(c.96+1G>C and c.242delT)in VPS33B,which is the causal gene.The patient was compound heterozygous,and her parents were both heterozygous.CONCLUSION This study extends the mutational spectrum of the VPS33B gene to provide a molecular basis for the etiological diagnosis of ARCS1 and for genetic counseling of the family.展开更多
Objective. To identify and evaluate mutations in the RPl gene among Chinese patients with retinitis pigmen-tosa (RP).Methods. Leukocyte DNA of 92 RP patients were collected in Hong Kong. Sequence changes of the entire...Objective. To identify and evaluate mutations in the RPl gene among Chinese patients with retinitis pigmen-tosa (RP).Methods. Leukocyte DNA of 92 RP patients were collected in Hong Kong. Sequence changes of the entire coding region of the RP1 gene were examined using PCR, conformation sensitive gel electrophoresis and DNA sequencing.Results. In total, 1 nonsense mutation and 1 nonsense variant as well as 10 missense alterations were identified in the RP1 gene, among which, Arg677Ter was found in 1 RP patient and another nonsense variant, Argl933Ter, was identified in 3 normal individuals and 1 patient with Stargardt' s disease, suggesting its nonpathogenicity. Arg677Ter is expected to lead to large disruptions of the encoded protein.Conclusions. The nonpathogenicity of Argl933Ter indicates that the C - terminal 224 residues of RPl protein may be not critical for RP1. The most C - terminal truncation previously reported was due to Tyr1053 (1 -bp del) and occurred in RP patients. Thus RP can be caused by reduction in the level of the region of RPl protein after codon 1052 but before 1933. To ascertain such a proposition, genotypes of more RP patients may reveal more RP causative mutations and more sequence alterations different than those of other ethnic groups.展开更多
BACKGROUND The SETD1B gene is instrumental in human intelligence and nerve development.Mutations in the SETD1B gene have been linked in recent studies to neurodevelopmental disorders,seizures,and language delay.CASE S...BACKGROUND The SETD1B gene is instrumental in human intelligence and nerve development.Mutations in the SETD1B gene have been linked in recent studies to neurodevelopmental disorders,seizures,and language delay.CASE SUMMARY This study aimed to analyze the clinical manifestations and treatment of three patients suffering from mental retardation,epilepsy,and language delay resulting from a new mutation in the SETD1B gene.Three individuals with these symptoms were selected,and their clinical symptoms,gene test results,and treatment were analyzed.This article discusses the impact of the SETD1B gene mutation on patients and outlines the treatment approach.Among the three patients(two females and one male,aged 8,4,and 1,respectively),all exhibited psychomotor retardation,attention deficit,and hyperactivity disorder,and two had epilepsy.Antiepileptic treatment with sodium tripolyvalproate halted the seizures in the affected child,although mental development remained somewhat delayed.Whole exome sequencing revealed new mutations in the SETD1B gene for all patients,specifically with c.5473C>T(p.Arg1825trp),c.4120C>T(p.Gln1374*,593),c.14_15insC(p.His5Hisfs*33).CONCLUSION Possessing the SETD1B gene mutation may cause mental retardation accompanied by seizures and language delay.Although the exact mechanism is not fully understood,interventions such as drug therapy,rehabilitation training,and family support can assist patients in managing their symptoms and enhancing their quality of life.Furthermore,genetic testing supplies healthcare providers with more precise diagnostic and therapeutic guidance,informs families about genetic disease risks,and contributes to understanding disease pathogenesis and drug research and development.展开更多
AIM:To describe the clinical heterogeneity of patients with novel mutations in BEST1.METHODS:All the members in the two Chinese families underwent detailed clinical evaluations including best-corrected visual acuity,s...AIM:To describe the clinical heterogeneity of patients with novel mutations in BEST1.METHODS:All the members in the two Chinese families underwent detailed clinical evaluations including best-corrected visual acuity,slit-lamp examination,applanation tonometry,and dilated fundus examination.Fundus autofluorescence,fundus fluorescein angiography,spectral-domain optical coherence tomography,electrooculography,and electroretinogram were also performed.Genomic DNA was extracted from venous blood for all the participants.The targeted next-generation sequencing of inherited retinal disease-associated genes was conducted to identify the causative mutation.RESULTS:A novel BEST1 missense mutation c.41T>C(p.Leu14Ser) was identified in Family 1.It was co-segregated with the phenotype of best vitelliform macular dystrophy(BVMD) and bioinformatics analysis confirmed it was harmful.Another novel BEST1 frameshift mutation c.345_(3)46insGGCAAGGACG(p.Glu119Glyfs*116) and a novel USH2A missense mutation c.12560G>A,p.Arg4187 His were identified in family 2 with retinitis pigmentosa(RP),which might interact and lead to the phenotype of RP.CONCLUSION:Two novel mutations in the BEST1 gene in two unrelated families with distinct phenotypes and BEST1 mutation accompanied with USH2A mutation would result in RP,which could be enormously helpful in understanding the pathogenesis of the inherited retinal disease caused by a BEST1 mutation.展开更多
AIM: To detect germline mutations of MLH1, and investigate microsatellite instability and expression of MLH1 in tumor tissues of hereditary non-polyposis colorectal cancer (HNPCC) with two novel germline mutations,...AIM: To detect germline mutations of MLH1, and investigate microsatellite instability and expression of MLH1 in tumor tissues of hereditary non-polyposis colorectal cancer (HNPCC) with two novel germline mutations, and further investigate the pathobiology of the two novel mutations of MLH1. METHODS: RNA was extracted from the peripheral blood of 12 patients from 12 different families that fulfilled the Amsterdam 11 Criteria for HNPCC. Germline mutations of MLH1 were determined by RT-PCR, followed by cDNA sequencing analysis. PCR-GeneScan analysis was used to investigate microsatellite instability with a panel of five microsatellite markers (BAT26, BAT25, D5S346, D2S123 and mfd15), along with immunohistochemical staining to detect the expression of MLH1 protein in two patients' tumor tissues with novel mutations. RESULTS: Three germline mutations were found in four patients, one of the mutations has previously been reported, but the other two, CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, have not been reported. The two patients' tumor tissues with novel mutations had high-frequency microsatellite instability that showed more than two unstable loci, and both tumors lost their MLH1 protein expression. CONCLUSION: The two novel germline mutations of MLH1 in HNPCC families i.e. CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, are very likely to have pathological significance.展开更多
Researchers have been searching for molecular features that could make avian H5N1 influenza transmissible among people since the first report of human infections with this virus in 1997. A recent study surprisingly de...Researchers have been searching for molecular features that could make avian H5N1 influenza transmissible among people since the first report of human infections with this virus in 1997. A recent study surprisingly demonstrated that only five mutations, fewer than previously estimated, are needed to make avian H5N1 influenza transmissible between ferrets through the air, raising fears that a human pandemic is possible if this virus escapes from the lab. Of the five mutations found, four of them are located in the HA gene that is responsible for the viral entry into the host cells. A crucial step for avian influenza to go across the species boundary to infect humans is the switch of its receptor binding specificity from avian to human types. The first task of this study was to quantify the individual as well as the collective effect of the known HA mutations from the previous research on receptor binding selection. Our second task was to identify new combinations of HA mutations that could change the receptor binding preference of H5N1 from avian to human types. Our findings thus deepened our understanding of the previous research and also extended its results by discovering new combinations of mutations that could enhance the binding of avian H5N1 to human type receptors while reduce that to avian types.展开更多
Background Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly ...Background Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. Methods A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WSI. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABl_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Results Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. Conclusions This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.展开更多
Background Wilms' tumor (nephroblastoma) is the most common pediatric kidney cancer. Only one Wilms' tumor gene is known, WT1 at 11p13, which is mutated in 5%-10% of Wilms' tumors. Recently, mutations were report...Background Wilms' tumor (nephroblastoma) is the most common pediatric kidney cancer. Only one Wilms' tumor gene is known, WT1 at 11p13, which is mutated in 5%-10% of Wilms' tumors. Recently, mutations were reported in WTX at Xq11.1 in Wilms' tumors. This study investigated the mutation proportion, type, and distribution in WTX and WT1 in children with Wilms' tumor. The role of WTX/WT1 in the development of Wilms' tumor, and the relationship between clinical phenotype and genotype, were also studied. Methods Wilms' tumor specimens (blood samples from 70 patients and tumor tissue samples from 52 patients) were used. A long fragment of WTXand 10 exons and intron sequences of WT1 were amplified by polymerase chain reaction (PCR) from extracted genomic DNA and sequenced. A chi-square test compared the difference between the W-/-X mutation group and the no mutation group. The relationship between the mutations and clinical phenotype was analyzed. Results W7X mutations were found in 5/52 tumor tissues and in 2/70 peripheral blood samples (five cases in total, all point mutations). Two patients had a WTX mutation in both samples. WT1 mutations were found in 2/52 tumor tissues and in 4/70 peripheral blood samples (five cases in total, all point mutations). One patient had a WT1 mutation in both samples. Ten cases had WTX or WT1 mutation (19.2% of Wilms' tumors). No overlapping WTX and WTI mutations were found. No significant differences in clinical parameters were found between patients with and without a W7X mutation. Conclusions WTX mutations occur early in Wilms' tumor development, but at a low proportion. There was no evidence that WTX is the main cause of Wilms' tumor. Clinical parameters of patients with WTX mutations are not related to the mutation, indicating a limited impact of WTX on tumor progression. WTX and WT1 mutations occur independently, suggesting a relationship between their gene products.展开更多
Background Mutations in fumarylacetoacetate hydrolase (FAH) gene can lead to tyrosinemia type 1 (HT1), a relatively rare autosomal recessive disorder. To date, no molecular genetic defects of HT1 in China have bee...Background Mutations in fumarylacetoacetate hydrolase (FAH) gene can lead to tyrosinemia type 1 (HT1), a relatively rare autosomal recessive disorder. To date, no molecular genetic defects of HT1 in China have been described. We investigated a Chinese family with a HT1 child to identify mutations in FAH. Methods DNA sequencing was used for mutations screening in FAH gene. Real-time polymerase chain reaction (PCR) was performed to determine the FAH gene expression level. To confirm the presence of degradation by the nonsense-mediated mRNA decay pathway (NMD), the fragments containing R237X mutations were analyzed by primer introduced restriction analysis-polymerase chain reaction (PIRA-PCR) and cDNA sequencing. Finally, the effects of the mutations reported in this study were predicted by online softwares. Results A boy aged 3 years and 8 months was diagnosed clinically with HT1 based on his manifestations and biochemical abnormalities. Screening of FAH gene revealed two heterozygous mutations R237X and L375P transmitted from his mother and father respectively. In this pedigree, the amount of FAH mRNA relative to a healthy control was 0.44 for the patient, 0.77 for his mother and 1.07 for his father. Moreover, both PIRA-PCR and cDNA sequencing showed significant reduction of the FAH mRNA with R237X nonsense mutation. The missense mutation of L375P was not reported previously and prediction software showed that this mutation decreased the stability of protein structure and affected protein function. Conclusions This is the first case of HT1 analyzed by molecular genetics in China. The R237X mutation in FAH down- regulates the FAH gene expression, and the L375P mutation perhaps interrupts the secondary structure of FAH protein.展开更多
Background Sotos syndrome is an overgrowth syndrome with characteristic facial gestalt and mental retardation of variable severity. Haploinsufficiency of the NSD 1 gene has been implicated as the major cause of Sotos ...Background Sotos syndrome is an overgrowth syndrome with characteristic facial gestalt and mental retardation of variable severity. Haploinsufficiency of the NSD 1 gene has been implicated as the major cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese patients. This study was conducted to investigate into the spectrum of NSD1 gene mutations in southern Chinese patients with Sotos syndrome. Methods Thirty-six Chinese patients with Sotos syndrome and two patients with Weaver syndrome were subject to molecular testing. Results NSD1 gene mutations were detected in 26 (72%) Sotos patients. Microdeletion was found in only 3 patients, while the other 23 had point mutations (6 frameshift, 8 nonsense, 2 spice site, and 7 missense). Of these, 19 mutations were never reported. NSD1 gene mutations were not found in the two patients with Weaver syndrome. Conclusions Most cases of Sotos syndrome are caused by NSD1 gene defects, but the spectrum of mutations is different from that of Japanese patients. Genotype-phenotype correlation showed that patients with microdeletions might be more prone to congenital heart disease but less likely to have somatic overgrowth. The two patients with Weaver syndrome were not found to have NSD1 gene mutations, but the number was too small for any conclusion to be drawn.展开更多
Cdgler-Najjar syndrome type Ⅰ (CN-I) is the most severe type of hereditary unconjugated hyperbilirubinemia. It is caused by homozygous or compound heterozygous mutations of the UDP-glycuronosyltransferase gene (UG...Cdgler-Najjar syndrome type Ⅰ (CN-I) is the most severe type of hereditary unconjugated hyperbilirubinemia. It is caused by homozygous or compound heterozygous mutations of the UDP-glycuronosyltransferase gene (UGT1A1) on chromosome 2q37. Two patients clinically diagnosed with CN-I were examined in this paper. We sequenced five exons and their flanking sequences, specifically the promoter region of UGT1A 1, of the two patients and their parents. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the UGT1A1 gene copy number of one patient. In patient A, two mutations, c.239_245delCTGTGCC (p.Pro80HisfsX6; had not been reported previously) and c.1156G〉T (p.Va1386Phe), were identified. In patient B, we found that this patient had lost heterozygosity of the UGTIA1 gene by inheriting a deletion of one allele, and had a novel mutation c.1253delT (p.Met418ArgfsX5) in the other allele. In summary, we detected three UGTIA 1 mutations in two CN-I patients: c.239_ 245delCTGTGCC (p.Pro80HisfsX6), c.1253delT (p.MeH18ArgfsX5), and c.1156G〉T (p.Va1386Phe). The former two mutations are pathogenic; however, the pathogenic mechanism of c.1156G〉T (p.Va1386Phe) is unknown.展开更多
Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organe...Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organelles that comprised the characteristics of late endosomes and/or lysosomes. In this study we analyzed the pathogenic effect of 103 nsSNPs reported in NPC1 using computational methods. Rl186C, S940L, R958Q and I1061T mutations were predicted as most deleterious and disease associated with NPC1 using SIFT, Polyphen 2.0, PANTHER, PhD-SNP, Pmut and MUTPred tools which were also endorsed with previous in vivo experimental studies. To understand the atomic arrangement in 3D space, the native and disease associated mutant (Rl186C, S940L, R958Q and I1061T) structures were modeled. Quantitative structural and flexibility analysis was conceded to observe the structural consequence of prioritized disease associated mutations (R1186C, S940L, R958Q and I1061T). Accessible surface area (ASA), free folding energy (FFE) and hydrogen bond (NH bond) showed more flexibility in 3D space in mutant structures. Based on the quantitative assessment and flexibility analysis of NPC1 variants, I1061T showed the most deleterious effect. Our analysis provides a clear clue to wet laboratory scientists to understand the structural and functional effect of NPCI gene upon mutation.展开更多
Background A high mortality rate of pancreatic cancer becomes a bottleneck for further treatment with long-term efficacy. It is urgent to find a new mean to predict the early onset of pancreatic cancer accurately. The...Background A high mortality rate of pancreatic cancer becomes a bottleneck for further treatment with long-term efficacy. It is urgent to find a new mean to predict the early onset of pancreatic cancer accurately. The authors hypothesized that genetic variants of cationic trypsinogen (PRSS1) gene could affect trypsin expression/function and result in abnormal activation of protease activated receptor-2 (PAR-2), then lead to pancreatic cancer. The aim of this study was to elaborate some novel mutations of PRSS1 gene in the patients with pancreatic cancer. Methods Totally 156 patients with pancreatic cancer and 220 unrelated individuals as controls were enrolled in this study. The mutations of PRSS1 gene were analyzed by direct sequencing. K-ras Mutation Detection Kit was used to find the general k-ras gene disorder in the pancreatic cancer tissue. Then the clinical data were collected and analyzed simultaneously. Results There were two patients who carried novel mutations which was IVS 3 +157 G〉C of PFISSI gene in peripheral blood specimens and pancreatic cancer tissue. What's more, it was surprising to find a novel complicated mutation of exon 3 in PRSS1 gene (c.409 A〉G and c.416 C〉T) in another young patient. The complicated mutation made No.135 and No.137 amino acid transfer from Thr to Ala and Thr to Met respectively. No any mutation was found in the normal controls while no mutations of k-ras gene were detected in the three patients. Conclusion Mutations of PRSS1 gene may be an important factor of pancreatic cancer.展开更多
基金Supported by the National Natural Science Foundation,No.81974124and Taishan Scholar Project,No.tsqn20161071.
文摘BACKGROUND Adaptor protein,phosphotyrosine interacting with PH domain and leucine zipper 1(APPL1)plays a crucial role in regulating insulin signaling and glucose metabolism.Mutations in the APPL1 gene have been associated with the development of maturity-onset diabetes of the young type 14(MODY14).Currently,only two mutations[c.1655T>A(p.Leu552*)and c.281G>A p.(Asp94Asn)]have been identified in association with this disease.Given the limited understanding of MODY14,it is imperative to identify additional cases and carry out comprehensive research on MODY14 and APPL1 mutations.AIM To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to characterize the functional role of the APPL1 domain.METHODS Patients exhibiting clinical signs and a medical history suggestive of MODY were screened for the study.Whole exome sequencing was performed on the patients as well as their family members.The pathogenicity of the identified APPL1 variants was predicted on the basis of bioinformatics analysis.In addition,the pathogenicity of the novel APPL1 variant was preliminarily evaluated through in vitro functional experiments.Finally,the impact of these variants on APPL1 protein expression and the insulin pathway were assessed,and the potential mechanism underlying the interaction between the APPL1 protein and the insulin receptor was further explored.RESULTS A total of five novel mutations were identified,including four missense mutations(Asp632Tyr,Arg633His,Arg532Gln,and Ile642Met)and one intronic mutation(1153-16A>T).Pathogenicity prediction analysis revealed that the Arg532Gln was pathogenic across all predictions.The Asp632Tyr and Arg633His variants also had pathogenicity based on MutationTaster.In addition,multiple alignment of amino acid sequences showed that the Arg532Gln,Asp632Tyr,and Arg633His variants were conserved across different species.Moreover,in in vitro functional experiments,both the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were found to downregulate the expression of APPL1 on both protein and mRNA levels,indicating their pathogenic nature.Therefore,based on the patient’s clinical and family history,combined with the results from bioinformatics analysis and functional experiment,the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were classified as pathogenic mutations.Importantly,all these mutations were located within the phosphotyrosinebinding domain of APPL1,which plays a critical role in the insulin sensitization effect.CONCLUSION This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a potential target for the diagnosis and treatment of the disease.
文摘BACKGROUND Chronic myelomonocytic leukemia(CMML),a rare clonal hematopoietic stem cell disorder characterized by myelodysplastic syndrome and myeloproliferative neoplasms,has a generally poor prognosis,and easily progresses to acute myeloid leukemia.The simultaneous incidence of hematologic malignancies and solid tumors is extremely low,and CMML coinciding with lung malignancies is even rarer.Here,we report a case of CMML,with ASXL1 and EZH2 gene mutations,combined with non-small cell lung cancer(lung squamous cell carcinoma).CASE SUMMARY A 63-year-old male,suffering from toothache accompanied by coughing,sputum,and bloody sputum for three months,was given a blood test after experiencing continuous bleeding resulting from a tooth extraction at a local hospital.Based on morphological results,the patient was diagnosed with CMML and bronchoscopy was performed in situ to confirm the diagnosis of squamous cell carcinoma in the lower lobe of the lung.After receiving azacitidine,programmed cell death protein 1,and platinum-based chemotherapy drugs,the patient developed severe myelosuppression and eventually fatal leukocyte stasis and dyspnea.CONCLUSION During the treatment and observation of CMML and be vigilant of the growth of multiple primary malignant tumors.
基金supported by the Science and Technology Department of Jiangxi Province,No.20114BAB205076a Grant from the Jiangxi Provincial Health Department,No.20094008
文摘Nurr1 defects could in part underlie Parkinson’s disease pathogenesis,and Nurr1 gene polymorphism has been found in Caucasian patients with Parkinson’s disease.In this study,heteroduplex technology was applied to compare the DNA sequences of eight exons of Nurr1 among 200 sporadic Parkinson’s disease patients and 200 healthy controls in the Han population in the Hubei province,China.One allele amplified from exon 3 of Nurr1 was polymorphic in five Parkinson’s disease patients(2.5%,5/200),and two individuals had a polymorphic allele amplified from exon 2 (1%,2/200).The anomalous electrophoresis fragment in exon 3 of Nurr1 gene contained a 709C/A missense mutation,and a polymorphic single nucleotide polymorphism at 388G/A was identified in exon 2.Compared with the control group,the Nurr1 gene expression level in the Parkinson’s disease group was decreased,and the Nurr1 gene expression levels in Parkinson’s disease patients carrying the polymorphisms at exons 2 and 3 were significantly decreased.Our data indicate that the single nucleotide polymorphism 388G/A in exon 2 and the 709C/A missense mutation in exon 3 of the Nurr1 gene in the Chinese population might affect the pathogenesis of Parkinson’s disease.
基金Supported by The Science and Technology Department of Sichuan Province,No.2021JDKP0015.
文摘BACKGROUND The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis(HS)in children.We also hope to promote the application of gene detection technology in children with HS,with the goals of identifying more related gene mutations,supporting the acquisition of improved molecular genetic information to further reveal the pathogenesis of HS in children,and providing important guidance for the diagnosis,treatment,and prevention of HS in children.CASE SUMMARY A 1-year and 5-month-old patient presented jaundice during the neonatal period,mild anemia 8 months later,splenic enlargement at 1 year and 5 months,and brittle red blood cell permeability.Genetic testing was performed on the patient,their parents,and sister.Swiss Model software was used to predict the protein structure of complex heterozygous mutations in ANK1 and SPTA1.Genetic testing revealed that the patient harbored a new mutation in the ANK1 gene from the father and a mutation in the SPTA1 gene from the mother.Combined with the clinical symptoms of the children,it is suggested that the newly discovered complex heterozygous mutations of ANK1 and SPTA1 may be the cause,providing important guidance for revealing the pathogenesis,diagnosis,treatment,and promotion of gene detection technology in children with HS.CONCLUSION This case involves an unreported complex heterozygous mutation of ANK1 and SPTA1,which provides a reference for exploring HS.
基金Supported by Pilot Project of Fujian Science and Technology Department,No.2015Y0057Fujian Medical Innovation Project,No.2018-ZQN-54Science and Technology Project of Fujian Education Department,No.JAT160211
文摘Von Meyenburg complexes(VMCs) are a rare type of ductal plate malformation. We herein report two Chinese families with VMCs, and the suspicious gene mutation of this disease. Proband A was a 62-year-old woman with abnormal echographic presentation of the liver. She received magnetic resonance imaging(MRI) examination and liver biopsy, and the results showed she had VMCs. Histologically proved hepatocellular carcinoma was found 1 year after the diagnosis of VMCs. Proband B was a 57-year-old woman with intrahepatic diffuselesions displayed by abdominal ultrasonography. Her final diagnoses were VMCs, congenital hepatic fibrosis, and hepatitis B surface e antigen-negative chronic hepatitis B after a series of examinations. Then, all the family members of both proband A and proband B were screened for VMCs by MRI or ultrasonography. The results showed that four of the 11 family members from two families, including two males and two females, were diagnosed with VMCs. DNA samples were extracted from the peripheral blood of those 11 individuals of two VMCs pedigrees and subjected to polymerase chain reaction amplification of the polycystic kidney and hepatic disease 1(PKHD1) gene. Two different mutation loci were identified. Heterozygous mutations located in exon 32(c.4280 delG, p.Gly1427 ValfsX 6) in family A and exon 28(c.3118 C>T, p.Arg1040 Ter) in family B were detected. We speculate that PKHD1 gene mutations may be responsible for the development of VMCs.
文摘The influenza A viruses have three gene segments, M, NS, and PB1, which code for more than one protein. The overlapping genes from the same segment entail their interdependence, which could be reflected in the evolutionary constraints, host distinction, and co-mutations of influenza. Most previous studies of overlapping genes focused on their unique evolutionary constraints, and very little was achieved to assess the potential impact of the overlap on other biological aspects of influenza. In this study, our aim was to explore the mutual dependence in host differentiation and co-mutations in M, NS, and PB1 of avian, human, 2009 H1N1, and swine viruses, with Random Forests, information entropy, and mutual information. The host markers and highly co-mutated individual sites and site pairs (P values < 0.035) in the three gene segments were identified with their relative significance between the overlapping genes calculated. Further, Random Forests predicted that among the three stop codons in the current PB1-F2 gene of 2009 H1N1, the significance of a mutation at these sites for host differentiation was, in order from most to least, that at 12, 58, and 88, i.e., the closer to the start of the gene the more important the mutation was. Finally, our sequence analysis surprisingly revealed that the full-length PB1-F2, if the three stop codons were all mutated, would function more as a swine protein than a human protein, although the PB1 of 2009 H1N1 was derived from human H3N2.
基金Supported by “Clinical medical+X” Project from Department of Medicine of Qingdao University
文摘AIM: To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma(PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features.METHODS: The DNA from the peripheral blood of 13 congenital glaucoma patients and 50 ethnically matched healthy controls from the affiliated hospital of Qingdao University were extracted. The coding region of the CYP1B1 gene was amplified by PCR and direct DNA sequencing was performed. Disease causing-variants were analyzed by comparing the sequences and the structures of wild type and mutant CYP1B1 proteins by PyMOL software.RESULTS: Two missense mutations, including A330 F caused by c.988 G>T&c.989 C>T, and R390H caused by c.1169 G>A, were identified in one of the 13 PCG patients analyzed in our study. A330F mutation was observed to be novel in the Chinese Han population, which dramatically altered the protein structure of CYP1B1 gene, including the changes in the ligand-binding pocket. Furthermore, R390H mutation caused the changes in heme-protein binding site of this gene. In addition, the clinical phenotype displayed by PCG patient with these mutations was more pronounced than other PCG patients without these mutations. Multiple surgeries and combined drug treatment were not effective in reducing the elevated intraocular pressure in this patient.CONCLUSION: A novel A330F mutation is identified in the CYP1B1 gene of Chinese PCG patient. Moreover, in combination with other mutation R390H, this PCG patient shows significant difference in the CYP1B1 protein structure, which may specifically contribute to severe glaucomatous phenotype.
基金Supported by the Hainan Province Clinical Medical Center,No.(2021)75 and(2021)276。
文摘BACKGROUND The VPS33B(OMIM:608552)gene is located on chromosome 15q26.1.We found a female infant with autosomal recessive arthrogryposis,renal dysfunction and cholestasis syndrome 1(ARCS1)caused by mutation in VPS33B.The child was diagnosed with ARCS1(OMIM:208085)after the whole exome sequencing revealed two heterozygous mutations(c.96+1G>C,c.242delT)in the VPS33B gene.CASE SUMMARY We report a Chinese female infant with neonatal cholestasis disorder,who was eventually diagnosed with ARCS1 by genetic analysis.Genetic testing revealed two new mutations(c.96+1G>C and c.242delT)in VPS33B,which is the causal gene.The patient was compound heterozygous,and her parents were both heterozygous.CONCLUSION This study extends the mutational spectrum of the VPS33B gene to provide a molecular basis for the etiological diagnosis of ARCS1 and for genetic counseling of the family.
文摘Objective. To identify and evaluate mutations in the RPl gene among Chinese patients with retinitis pigmen-tosa (RP).Methods. Leukocyte DNA of 92 RP patients were collected in Hong Kong. Sequence changes of the entire coding region of the RP1 gene were examined using PCR, conformation sensitive gel electrophoresis and DNA sequencing.Results. In total, 1 nonsense mutation and 1 nonsense variant as well as 10 missense alterations were identified in the RP1 gene, among which, Arg677Ter was found in 1 RP patient and another nonsense variant, Argl933Ter, was identified in 3 normal individuals and 1 patient with Stargardt' s disease, suggesting its nonpathogenicity. Arg677Ter is expected to lead to large disruptions of the encoded protein.Conclusions. The nonpathogenicity of Argl933Ter indicates that the C - terminal 224 residues of RPl protein may be not critical for RP1. The most C - terminal truncation previously reported was due to Tyr1053 (1 -bp del) and occurred in RP patients. Thus RP can be caused by reduction in the level of the region of RPl protein after codon 1052 but before 1933. To ascertain such a proposition, genotypes of more RP patients may reveal more RP causative mutations and more sequence alterations different than those of other ethnic groups.
基金Key Health Science and Technology Development Project of Nanjing City,Jiangsu Province,No.ZKX19038.
文摘BACKGROUND The SETD1B gene is instrumental in human intelligence and nerve development.Mutations in the SETD1B gene have been linked in recent studies to neurodevelopmental disorders,seizures,and language delay.CASE SUMMARY This study aimed to analyze the clinical manifestations and treatment of three patients suffering from mental retardation,epilepsy,and language delay resulting from a new mutation in the SETD1B gene.Three individuals with these symptoms were selected,and their clinical symptoms,gene test results,and treatment were analyzed.This article discusses the impact of the SETD1B gene mutation on patients and outlines the treatment approach.Among the three patients(two females and one male,aged 8,4,and 1,respectively),all exhibited psychomotor retardation,attention deficit,and hyperactivity disorder,and two had epilepsy.Antiepileptic treatment with sodium tripolyvalproate halted the seizures in the affected child,although mental development remained somewhat delayed.Whole exome sequencing revealed new mutations in the SETD1B gene for all patients,specifically with c.5473C>T(p.Arg1825trp),c.4120C>T(p.Gln1374*,593),c.14_15insC(p.His5Hisfs*33).CONCLUSION Possessing the SETD1B gene mutation may cause mental retardation accompanied by seizures and language delay.Although the exact mechanism is not fully understood,interventions such as drug therapy,rehabilitation training,and family support can assist patients in managing their symptoms and enhancing their quality of life.Furthermore,genetic testing supplies healthcare providers with more precise diagnostic and therapeutic guidance,informs families about genetic disease risks,and contributes to understanding disease pathogenesis and drug research and development.
基金Supported by the Health Special Research Projects of Military Commission (No.19BJZ39)the Key Research Plan of Hainan Province (No.ZDYF2020031)。
文摘AIM:To describe the clinical heterogeneity of patients with novel mutations in BEST1.METHODS:All the members in the two Chinese families underwent detailed clinical evaluations including best-corrected visual acuity,slit-lamp examination,applanation tonometry,and dilated fundus examination.Fundus autofluorescence,fundus fluorescein angiography,spectral-domain optical coherence tomography,electrooculography,and electroretinogram were also performed.Genomic DNA was extracted from venous blood for all the participants.The targeted next-generation sequencing of inherited retinal disease-associated genes was conducted to identify the causative mutation.RESULTS:A novel BEST1 missense mutation c.41T>C(p.Leu14Ser) was identified in Family 1.It was co-segregated with the phenotype of best vitelliform macular dystrophy(BVMD) and bioinformatics analysis confirmed it was harmful.Another novel BEST1 frameshift mutation c.345_(3)46insGGCAAGGACG(p.Glu119Glyfs*116) and a novel USH2A missense mutation c.12560G>A,p.Arg4187 His were identified in family 2 with retinitis pigmentosa(RP),which might interact and lead to the phenotype of RP.CONCLUSION:Two novel mutations in the BEST1 gene in two unrelated families with distinct phenotypes and BEST1 mutation accompanied with USH2A mutation would result in RP,which could be enormously helpful in understanding the pathogenesis of the inherited retinal disease caused by a BEST1 mutation.
基金the Key Project of Shanghai Medical Subjects,No.05Ⅲ004 and Shanghai Pujiang Program,No.06PJ14019
文摘AIM: To detect germline mutations of MLH1, and investigate microsatellite instability and expression of MLH1 in tumor tissues of hereditary non-polyposis colorectal cancer (HNPCC) with two novel germline mutations, and further investigate the pathobiology of the two novel mutations of MLH1. METHODS: RNA was extracted from the peripheral blood of 12 patients from 12 different families that fulfilled the Amsterdam 11 Criteria for HNPCC. Germline mutations of MLH1 were determined by RT-PCR, followed by cDNA sequencing analysis. PCR-GeneScan analysis was used to investigate microsatellite instability with a panel of five microsatellite markers (BAT26, BAT25, D5S346, D2S123 and mfd15), along with immunohistochemical staining to detect the expression of MLH1 protein in two patients' tumor tissues with novel mutations. RESULTS: Three germline mutations were found in four patients, one of the mutations has previously been reported, but the other two, CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, have not been reported. The two patients' tumor tissues with novel mutations had high-frequency microsatellite instability that showed more than two unstable loci, and both tumors lost their MLH1 protein expression. CONCLUSION: The two novel germline mutations of MLH1 in HNPCC families i.e. CGC→TGC at codon 217 of exon 8 and CCG→CTG at codon 581 of exon 16, are very likely to have pathological significance.
文摘Researchers have been searching for molecular features that could make avian H5N1 influenza transmissible among people since the first report of human infections with this virus in 1997. A recent study surprisingly demonstrated that only five mutations, fewer than previously estimated, are needed to make avian H5N1 influenza transmissible between ferrets through the air, raising fears that a human pandemic is possible if this virus escapes from the lab. Of the five mutations found, four of them are located in the HA gene that is responsible for the viral entry into the host cells. A crucial step for avian influenza to go across the species boundary to infect humans is the switch of its receptor binding specificity from avian to human types. The first task of this study was to quantify the individual as well as the collective effect of the known HA mutations from the previous research on receptor binding selection. Our second task was to identify new combinations of HA mutations that could change the receptor binding preference of H5N1 from avian to human types. Our findings thus deepened our understanding of the previous research and also extended its results by discovering new combinations of mutations that could enhance the binding of avian H5N1 to human type receptors while reduce that to avian types.
基金This work was supported by a grant from National Natural Science Foundation of China(No.30371523)Research Foundation from Chinese PLA General Hospital(No.03YZJJ003)to Dr.YUAN Hui-jun
文摘Background Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. Methods A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WSI. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABl_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Results Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. Conclusions This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.
文摘Background Wilms' tumor (nephroblastoma) is the most common pediatric kidney cancer. Only one Wilms' tumor gene is known, WT1 at 11p13, which is mutated in 5%-10% of Wilms' tumors. Recently, mutations were reported in WTX at Xq11.1 in Wilms' tumors. This study investigated the mutation proportion, type, and distribution in WTX and WT1 in children with Wilms' tumor. The role of WTX/WT1 in the development of Wilms' tumor, and the relationship between clinical phenotype and genotype, were also studied. Methods Wilms' tumor specimens (blood samples from 70 patients and tumor tissue samples from 52 patients) were used. A long fragment of WTXand 10 exons and intron sequences of WT1 were amplified by polymerase chain reaction (PCR) from extracted genomic DNA and sequenced. A chi-square test compared the difference between the W-/-X mutation group and the no mutation group. The relationship between the mutations and clinical phenotype was analyzed. Results W7X mutations were found in 5/52 tumor tissues and in 2/70 peripheral blood samples (five cases in total, all point mutations). Two patients had a WTX mutation in both samples. WT1 mutations were found in 2/52 tumor tissues and in 4/70 peripheral blood samples (five cases in total, all point mutations). One patient had a WT1 mutation in both samples. Ten cases had WTX or WT1 mutation (19.2% of Wilms' tumors). No overlapping WTX and WTI mutations were found. No significant differences in clinical parameters were found between patients with and without a W7X mutation. Conclusions WTX mutations occur early in Wilms' tumor development, but at a low proportion. There was no evidence that WTX is the main cause of Wilms' tumor. Clinical parameters of patients with WTX mutations are not related to the mutation, indicating a limited impact of WTX on tumor progression. WTX and WT1 mutations occur independently, suggesting a relationship between their gene products.
文摘Background Mutations in fumarylacetoacetate hydrolase (FAH) gene can lead to tyrosinemia type 1 (HT1), a relatively rare autosomal recessive disorder. To date, no molecular genetic defects of HT1 in China have been described. We investigated a Chinese family with a HT1 child to identify mutations in FAH. Methods DNA sequencing was used for mutations screening in FAH gene. Real-time polymerase chain reaction (PCR) was performed to determine the FAH gene expression level. To confirm the presence of degradation by the nonsense-mediated mRNA decay pathway (NMD), the fragments containing R237X mutations were analyzed by primer introduced restriction analysis-polymerase chain reaction (PIRA-PCR) and cDNA sequencing. Finally, the effects of the mutations reported in this study were predicted by online softwares. Results A boy aged 3 years and 8 months was diagnosed clinically with HT1 based on his manifestations and biochemical abnormalities. Screening of FAH gene revealed two heterozygous mutations R237X and L375P transmitted from his mother and father respectively. In this pedigree, the amount of FAH mRNA relative to a healthy control was 0.44 for the patient, 0.77 for his mother and 1.07 for his father. Moreover, both PIRA-PCR and cDNA sequencing showed significant reduction of the FAH mRNA with R237X nonsense mutation. The missense mutation of L375P was not reported previously and prediction software showed that this mutation decreased the stability of protein structure and affected protein function. Conclusions This is the first case of HT1 analyzed by molecular genetics in China. The R237X mutation in FAH down- regulates the FAH gene expression, and the L375P mutation perhaps interrupts the secondary structure of FAH protein.
文摘Background Sotos syndrome is an overgrowth syndrome with characteristic facial gestalt and mental retardation of variable severity. Haploinsufficiency of the NSD 1 gene has been implicated as the major cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese patients. This study was conducted to investigate into the spectrum of NSD1 gene mutations in southern Chinese patients with Sotos syndrome. Methods Thirty-six Chinese patients with Sotos syndrome and two patients with Weaver syndrome were subject to molecular testing. Results NSD1 gene mutations were detected in 26 (72%) Sotos patients. Microdeletion was found in only 3 patients, while the other 23 had point mutations (6 frameshift, 8 nonsense, 2 spice site, and 7 missense). Of these, 19 mutations were never reported. NSD1 gene mutations were not found in the two patients with Weaver syndrome. Conclusions Most cases of Sotos syndrome are caused by NSD1 gene defects, but the spectrum of mutations is different from that of Japanese patients. Genotype-phenotype correlation showed that patients with microdeletions might be more prone to congenital heart disease but less likely to have somatic overgrowth. The two patients with Weaver syndrome were not found to have NSD1 gene mutations, but the number was too small for any conclusion to be drawn.
文摘Cdgler-Najjar syndrome type Ⅰ (CN-I) is the most severe type of hereditary unconjugated hyperbilirubinemia. It is caused by homozygous or compound heterozygous mutations of the UDP-glycuronosyltransferase gene (UGT1A1) on chromosome 2q37. Two patients clinically diagnosed with CN-I were examined in this paper. We sequenced five exons and their flanking sequences, specifically the promoter region of UGT1A 1, of the two patients and their parents. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the UGT1A1 gene copy number of one patient. In patient A, two mutations, c.239_245delCTGTGCC (p.Pro80HisfsX6; had not been reported previously) and c.1156G〉T (p.Va1386Phe), were identified. In patient B, we found that this patient had lost heterozygosity of the UGTIA1 gene by inheriting a deletion of one allele, and had a novel mutation c.1253delT (p.Met418ArgfsX5) in the other allele. In summary, we detected three UGTIA 1 mutations in two CN-I patients: c.239_ 245delCTGTGCC (p.Pro80HisfsX6), c.1253delT (p.MeH18ArgfsX5), and c.1156G〉T (p.Va1386Phe). The former two mutations are pathogenic; however, the pathogenic mechanism of c.1156G〉T (p.Va1386Phe) is unknown.
文摘Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organelles that comprised the characteristics of late endosomes and/or lysosomes. In this study we analyzed the pathogenic effect of 103 nsSNPs reported in NPC1 using computational methods. Rl186C, S940L, R958Q and I1061T mutations were predicted as most deleterious and disease associated with NPC1 using SIFT, Polyphen 2.0, PANTHER, PhD-SNP, Pmut and MUTPred tools which were also endorsed with previous in vivo experimental studies. To understand the atomic arrangement in 3D space, the native and disease associated mutant (Rl186C, S940L, R958Q and I1061T) structures were modeled. Quantitative structural and flexibility analysis was conceded to observe the structural consequence of prioritized disease associated mutations (R1186C, S940L, R958Q and I1061T). Accessible surface area (ASA), free folding energy (FFE) and hydrogen bond (NH bond) showed more flexibility in 3D space in mutant structures. Based on the quantitative assessment and flexibility analysis of NPC1 variants, I1061T showed the most deleterious effect. Our analysis provides a clear clue to wet laboratory scientists to understand the structural and functional effect of NPCI gene upon mutation.
基金This study was supported by grants from the Project Foundation of Fujian Provincial Education (No. JA10143), National High Technology Investigation Project Foundation of China (No. 2008AA02Z433), National Natural Science Foundation of China (No. 20975021, No. 20805006) and the Major Program Foundation of Fujian Medical University (No. 09ZD013).
文摘Background A high mortality rate of pancreatic cancer becomes a bottleneck for further treatment with long-term efficacy. It is urgent to find a new mean to predict the early onset of pancreatic cancer accurately. The authors hypothesized that genetic variants of cationic trypsinogen (PRSS1) gene could affect trypsin expression/function and result in abnormal activation of protease activated receptor-2 (PAR-2), then lead to pancreatic cancer. The aim of this study was to elaborate some novel mutations of PRSS1 gene in the patients with pancreatic cancer. Methods Totally 156 patients with pancreatic cancer and 220 unrelated individuals as controls were enrolled in this study. The mutations of PRSS1 gene were analyzed by direct sequencing. K-ras Mutation Detection Kit was used to find the general k-ras gene disorder in the pancreatic cancer tissue. Then the clinical data were collected and analyzed simultaneously. Results There were two patients who carried novel mutations which was IVS 3 +157 G〉C of PFISSI gene in peripheral blood specimens and pancreatic cancer tissue. What's more, it was surprising to find a novel complicated mutation of exon 3 in PRSS1 gene (c.409 A〉G and c.416 C〉T) in another young patient. The complicated mutation made No.135 and No.137 amino acid transfer from Thr to Ala and Thr to Met respectively. No any mutation was found in the normal controls while no mutations of k-ras gene were detected in the three patients. Conclusion Mutations of PRSS1 gene may be an important factor of pancreatic cancer.