An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is propo...An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is proposed. Its authentication part is proven secure against existential forgery on adaptively chosen message and ID attacks under the random oracle model upon the CDH assumptions. The session keys are proven secure in a formal CK security model under the random oracle model upon the CBDH assumptions. Compared with the previous multiple key agreement protocols,it requires less communication cost.展开更多
Current grid authentication frameworks are achieved by applying the standard SSL authentication protocol (SAP). The authentication process is very complicated, and therefore, the grid user is in a heavily loaded poi...Current grid authentication frameworks are achieved by applying the standard SSL authentication protocol (SAP). The authentication process is very complicated, and therefore, the grid user is in a heavily loaded point both in computation and in communication. Based on identity-based architecture for grid (IBAG) and corresponding encryption and signature schemes, an identity-based authentication protocol for grid is proposed. Being certificate-free, the authentication protocol aligns well with the demands of grid computing. Through simulation testing, it is seen that the authentication protocol is more lightweight and efficient than SAP, especially the more lightweight user side. This contributes to the larger grid scalability.展开更多
Security is a critical issue in cloud computing(CC)because attackers can fabricate data by creating,copying,or deleting data with no user authorization.Most of the existing techniques make use of password-based authen...Security is a critical issue in cloud computing(CC)because attackers can fabricate data by creating,copying,or deleting data with no user authorization.Most of the existing techniques make use of password-based authentication for encrypting data.Password-based schemes suffer from several issues and can be easily compromised.This paper presents a new concept of hybrid metaheuristic optimization as an identity-based secure and optimal authentication(HMO-ISOA)scheme for CC environments.The HMOISOA technique makes use of iris and fingerprint biometrics.Initially,the HMO-ISOA technique involves a directional local ternary quantized extrema pattern–based feature extraction process to extract features from the iris and fingerprint.Next,the features are fed into the hybrid social spider using the dragon fly algorithm to determine the optimal solution.This optimal solution acts as a key for an advanced encryption standard to encrypt and decrypt the data.A central benefit of determining the optimal value in this way is that the intruder cannot determine this value.The attacker also cannot work out which specific part of the fingerprint and iris feature values are acted upon as a key for the AES technique.Finally,the encrypted data can be saved in the cloud using a cloud simulator.Experimental analysis was performed on five fingerprint and iris images for a man-in-the-middle attack.The simulation outcome validated that the presented HMO-ISOA model achieved better results compared with other existing methods.展开更多
With the availability of low-cost radio frequency identification (RFID) tags,security becomes an increasing concern. However,such tags do not permit complex cryptographic functions due to their computational,communica...With the availability of low-cost radio frequency identification (RFID) tags,security becomes an increasing concern. However,such tags do not permit complex cryptographic functions due to their computational,communications,and storage limitations. In this paper,we investigate the security issues and requirements of RFID systems,and propose ultra-light weight and light weight protocols for low-cost RFID tags.The proposed protocols has been applied to a supply chain management system.展开更多
In order to solve the various privacy and security problems in RFID system, a new low-cost RFID mutual authentication protocol based on ID updating mechanics is proposed. In the proposed scheme, the backend server kee...In order to solve the various privacy and security problems in RFID system, a new low-cost RFID mutual authentication protocol based on ID updating mechanics is proposed. In the proposed scheme, the backend server keeps both the current ID and potential next ID for each tag, thus to solve the possible problem of de-synchronization attack in the most ID updating-based schemes. In the security analysis section, comparing several protocols in property required and attacker resistances, the comparison results show that the proposed protocol provides strong authentication and strong integrity of the transmissions and can withstand most the possible attacks that break the security of the previous schemes. In the performance evaluation section, the analysis results also indicate that, in terms of computational cost and storage requirement, the proposed scheme is safer, more efficient, more suitable for low-cost tag and more feasible in practice.展开更多
In network-connected UAV(NCUAV) communication systems, user authentication is replaced by platform identity authentication and integrity check because many NC-UAVs are operated without human intervention. Direct anony...In network-connected UAV(NCUAV) communication systems, user authentication is replaced by platform identity authentication and integrity check because many NC-UAVs are operated without human intervention. Direct anonymous attestation(DAA) is an attractive cryptographic scheme that provides an elegant balance between platform authentication and anonymity. However, because of the low-level computing capability and limited transmission bandwidth in UAV, the existing DAA schemes are not suitable for NC-UAV communication systems. In this paper, we propose an enhanced DAA scheme with mutual authentication(MA-DAA scheme), which meets the security requirements of NC-UAV communication systems. The proposed MA-DAA scheme, which is based on asymmetric pairings, bundles the identities of trusted platform module(TPM) and Host to solve the malicious module changing attacks. Credential randomization, batch proof and verification, and mutual authentication are realized in the MA-DAA scheme. The computational workload in TPM and Host is reduced in order to meet the low computation and resource requirements in TPM and Host.The entire scheme and protocols are presented,and the security and efficiency of the proposed MA-DAA scheme are proved and analyzed.Our experiment results also confirm the high efficiency of the proposed scheme.展开更多
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-respo...In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.展开更多
As the technology of mobile devices spreads fast,the price of mobile devices is getting cheaper.Most of the people have mobile devices,and these devices have the technology of near field communication(NFC).With the ...As the technology of mobile devices spreads fast,the price of mobile devices is getting cheaper.Most of the people have mobile devices,and these devices have the technology of near field communication(NFC).With the long time development and research,the mobile devices use NFC technology on the payment and authentication applications,and replace the smartcard,the access control card,and the credit card by using the card emulation mode.It helps the development of NFC applications.In recent years,more and more users begin using NFC technology on mobile payment and authentication.Many researches have proposed the related NFC authentication protocols,but their schemes are still lack of some security properties and functions,which are necessary for NFC authentication protocols.In this paper,we propose a secure and efficient NFC authentication scheme between two NFC devices by the help of the authentication server that provides mutual authentication.展开更多
In the literature, several dynamic ID-based remote user mutual authentication schemes are implemented using password, smartcard and Elliptic Curve Cryptography(ECC), however, none of them provides resilience against d...In the literature, several dynamic ID-based remote user mutual authentication schemes are implemented using password, smartcard and Elliptic Curve Cryptography(ECC), however, none of them provides resilience against different attacks. Therefore, there is a great need to design an efficient scheme for practical applications. In this paper, we proposed such a scheme in order to provide desired security attributes and computation efficiencies. Compared with other existing techniques, our scheme is more efficient and secured. In addition, our scheme is provably secure in the random oracle model under the hardness assumption of computational Diffie-Hellman problem.展开更多
Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we ...Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we propose a novel quantum secure direct communication protocol based on signal photons and Bell states.Before the execution of the proposed protocol,two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret,respectively.Then the message sender,Alice,encodes each secret message bit into two single photons(|01>or|10>)or a Bell state(1|φ^(+)>=1/√2(|0>|-|1>1>)),and composes an ordered secret message sequence.To insure the security of communication,Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB.By the secret identity IDA and IDB,both sides of the communication can check eavesdropping and identify each other.The proposed protocol not only completes secure direct communication,but also realizes the mutual authentication.The security analysis of the proposed protocol is presented in the paper.The analysis results show that this protocol is secure against some common attacks,and no secret message leaks even if the messages are broken.Compared with the two-way QSDC protocols,the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack.Furthermore,our proposed protocol can be realized without quantum memory.展开更多
Please WBANs are a sensor network for detection and collection of sensitive data to the human body,which is lightweight and mobile.WBANs transmit sensitive and significant messages through the public channel,which mak...Please WBANs are a sensor network for detection and collection of sensitive data to the human body,which is lightweight and mobile.WBANs transmit sensitive and significant messages through the public channel,which makes it easy for an attacker to eavesdrop and modify the messages,thus posing a severe threat to the security of the messages.Therefore,it is essential to put in place authentication and key agreement between different communication nodes in WBANs.In this paper,a lightweight and secure authenticated key agreement protocol in wireless body area networks is designed.It is capable to reduce the cost of sensor node computation while ensuring security.Besides,an informal security analysis is conducted to discuss the security of the protocol against well-known attacks.Finally,the energy consumption of the protocol is evaluated,and the results show that the sensor nodes only need low storage cost,computational cost and communication cost.展开更多
Most of the Radio Frequency IDentification (RFID) authentication protocols, proposed to preserve security and privacy, are analysed to show that they can not provide security against some passive or active attacks. In...Most of the Radio Frequency IDentification (RFID) authentication protocols, proposed to preserve security and privacy, are analysed to show that they can not provide security against some passive or active attacks. In this paper, the security of two matrix-based protocols, proposed by Karthikeyan and Nesterenko (KN protocol) and Ramachandra et al. (RRS protocol) that conform to Electronic Product Code Class-1 Generation-2 (EPC Class-1 Gen-2) standard, are investigated. Using the linear relationship of multiplication of matrix and vector, we point out that both protocols can not provide scalability, and they are vulnerable to passive impersonation attack. In addition, both protocols are totally insecure if the adversary can compromise one tag to extract the secrets. A modified lightweight matrix-based authentication protocol is presented, which can resist mainly common attacks on an RFID authentication system including eavesdropping, relay attack, desynchronization attack, impersonation attack and tag tracking attack. The new protocol also has the desirable scalability property and can keep secure under compromising attack.展开更多
In cloud computing environments, user authentication is an important security mechanism because it provides the fundamentals of authentication, authorization, and accounting (AAA). In 2009, Wang et al. proposed an i...In cloud computing environments, user authentication is an important security mechanism because it provides the fundamentals of authentication, authorization, and accounting (AAA). In 2009, Wang et al. proposed an identity-based (ID-based) authentication scheme to deal with the user login problem for cloud computing. However, Wang et aL's scheme is insecure against message alteration and impersonation attacks. Besides, their scheme has large computation costs for cloud users. Therefore, we propose a novel ID-based user authentication scheme to solve the above mentioned problems. The proposed scheme provides anonymity and security for the user who accesses different cloud servers. Compared with the related schemes, the proposed scheme has less computation cost so it is very efficient for cloud computing in practice.展开更多
Wireless medical sensor networks(WMSNs)play a significant role in increasing the availability of remote healthcare systems.The vital and physiological data of the patient can be collected using the WMSN via sensor nod...Wireless medical sensor networks(WMSNs)play a significant role in increasing the availability of remote healthcare systems.The vital and physiological data of the patient can be collected using the WMSN via sensor nodes that are placed on his/her body and then transmitted remotely to a healthcare professional for proper diagnosis.The protection of the patient’s privacy and their data from unauthorized access is a major concern in such systems.Therefore,an authentication scheme with a high level of security is one of the most effective mechanisms by which to address these security concerns.Many authentication schemes for remote patient monitoring have been proposed recently.However,the majority of these schemes are extremely vulnerable to attacks and are unsuitable for practical use.This paper proposes a secure three-factor authentication scheme for a patient-monitoring healthcare system that operates remotely using a WMSN.The proposed authentication scheme is formally verified using the Burrows,Abadi and Needham’s(BAN)logic model and an automatic cryptographic protocol verifier(ProVerif)tool.We show that our authentication scheme can prevent relevant types of security breaches in a practical context according to the discussed possible attack scenarios.Comparisons of the security and performance are carried out with recently proposed authentication schemes.The results of the analysis show that the proposed authentication scheme is secure and practical for use,with reasonable storage space,computation,and communication efficiency.展开更多
With the rising popularity of the Internet and the development of big data technology,an increasing number of organizations are opting to cooperate across domains to maximize their benefits.Most organizations use publ...With the rising popularity of the Internet and the development of big data technology,an increasing number of organizations are opting to cooperate across domains to maximize their benefits.Most organizations use public key infrastructure to ensure security in accessing their data and applications.However,with the continuous development of identity-based encryption(IBE)technology,small-and medium-sized enterprises are increasingly using IBE to deploy internal authentication systems.To solve the problems that arise when crossing heterogeneous authentication domains and to guarantee the security of the certification process,we propose using blockchain technology to establish a reliable cross-domain authentication scheme.Using the distributed and tamper-resistant characteristics of the blockchain,we design a cross-domain authentication model based on blockchain to guarantee the security of the heterogeneous authentication process and present a cross-domain authentication protocol based on blockchain.This model does not change the internal trust structure of each authentication domain and is highly scalable.Furthermore,on the premise of ensuring security,the process of verifying the signature of the root certificate in the traditional cross-domain authentication protocol is improved to verify the hash value of the root certificate,thereby improving the authentication efficiency.The developed prototype exhibits generality and simplicity compared to previous methods.展开更多
Cloud computing provides powerful processing capabilities for large-scale intelligent Internet of things(IoT)terminals.However,the massive realtime data processing requirements challenge the existing cloud computing m...Cloud computing provides powerful processing capabilities for large-scale intelligent Internet of things(IoT)terminals.However,the massive realtime data processing requirements challenge the existing cloud computing model.The edge server is closer to the data source.The end-edge-cloud collaboration offloads the cloud computing tasks to the edge environment,which solves the shortcomings of the cloud in resource storage,computing performance,and energy consumption.IoT terminals and sensors have caused security and privacy challenges due to resource constraints and exponential growth.As the key technology of IoT,Radio-Frequency Identification(RFID)authentication protocol tremendously strengthens privacy protection and improves IoT security.However,it inevitably increases system overhead while improving security,which is a major blow to low-cost RFID tags.The existing RFID authentication protocols are difficult to balance overhead and security.This paper designs an ultra-lightweight encryption function and proposes an RFID authentication scheme based on this function for the end-edge-cloud collaborative environment.The BAN logic proof and protocol verification tools AVISPA formally verify the protocol’s security.We use VIVADO to implement the encryption function and tag’s overhead on the FPGA platform.Performance evaluation indicates that the proposed protocol balances low computing costs and high-security requirements.展开更多
Many patients have begun to use mobile applications to handle different health needs because they can better access high-speed Internet and smartphones.These devices and mobile applications are now increasingly used a...Many patients have begun to use mobile applications to handle different health needs because they can better access high-speed Internet and smartphones.These devices and mobile applications are now increasingly used and integrated through the medical Internet of Things(mIoT).mIoT is an important part of the digital transformation of healthcare,because it can introduce new business models and allow efficiency improvements,cost control and improve patient experience.In the mIoT system,when migrating from traditional medical services to electronic medical services,patient protection and privacy are the priorities of each stakeholder.Therefore,it is recommended to use different user authentication and authorization methods to improve security and privacy.In this paper,our prosed model involves a shared identity verification process with different situations in the e-health system.We aim to reduce the strict and formal specification of the joint key authentication model.We use the AVISPA tool to verify through the wellknown HLPSL specification language to develop user authentication and smart card use cases in a user-friendly environment.Our model has economic and strategic advantages for healthcare organizations and healthcare workers.The medical staff can increase their knowledge and ability to analyze medical data more easily.Our model can continuously track health indicators to automatically manage treatments and monitor health data in real time.Further,it can help customers prevent chronic diseases with the enhanced cognitive functions support.The necessity for efficient identity verification in e-health care is even more crucial for cognitive mitigation because we increasingly rely on mIoT systems.展开更多
Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice a...Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.展开更多
The healthcare internet of things(IoT)system has dramatically reshaped this important industry sector.This system employs the latest technology of IoT and wireless medical sensor networks to support the reliable conne...The healthcare internet of things(IoT)system has dramatically reshaped this important industry sector.This system employs the latest technology of IoT and wireless medical sensor networks to support the reliable connection of patients and healthcare providers.The goal is the remote monitoring of a patient’s physiological data by physicians.Moreover,this system can reduce the number and expenses of healthcare centers,make up for the shortage of healthcare centers in remote areas,enable consultation with expert physicians around the world,and increase the health awareness of communities.The major challenges that affect the rapid deployment and widespread acceptance of such a system are the weaknesses in the authentication process,which should maintain the privacy of patients,and the integrity of remote medical instructions.Current research results indicate the need of a flexible authentication scheme.This study proposes a scheme with enhanced security for healthcare IoT systems,called an end-to-end authentication scheme for healthcare IoT systems,that is,an E2EA.The proposed scheme supports security services such as a strong and flexible authentication process,simultaneous anonymity of the patient and physician,and perfect forward secrecy services.A security analysis based on formal and informal methods demonstrates that the proposed scheme can resist numerous security-related attacks.A comparison with related authentication schemes shows that the proposed scheme is efficient in terms of communication,computation,and storage,and therefore cannot only offer attractive security services but can reasonably be applied to healthcare IoT systems.展开更多
基金supported by a grant from the National Natural Science Foundation of China (10961013)
文摘An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is proposed. Its authentication part is proven secure against existential forgery on adaptively chosen message and ID attacks under the random oracle model upon the CDH assumptions. The session keys are proven secure in a formal CK security model under the random oracle model upon the CBDH assumptions. Compared with the previous multiple key agreement protocols,it requires less communication cost.
基金the Sichuan Provincial Youth Software Innovation Foundation (2004AA03692005AA0827).
文摘Current grid authentication frameworks are achieved by applying the standard SSL authentication protocol (SAP). The authentication process is very complicated, and therefore, the grid user is in a heavily loaded point both in computation and in communication. Based on identity-based architecture for grid (IBAG) and corresponding encryption and signature schemes, an identity-based authentication protocol for grid is proposed. Being certificate-free, the authentication protocol aligns well with the demands of grid computing. Through simulation testing, it is seen that the authentication protocol is more lightweight and efficient than SAP, especially the more lightweight user side. This contributes to the larger grid scalability.
文摘Security is a critical issue in cloud computing(CC)because attackers can fabricate data by creating,copying,or deleting data with no user authorization.Most of the existing techniques make use of password-based authentication for encrypting data.Password-based schemes suffer from several issues and can be easily compromised.This paper presents a new concept of hybrid metaheuristic optimization as an identity-based secure and optimal authentication(HMO-ISOA)scheme for CC environments.The HMOISOA technique makes use of iris and fingerprint biometrics.Initially,the HMO-ISOA technique involves a directional local ternary quantized extrema pattern–based feature extraction process to extract features from the iris and fingerprint.Next,the features are fed into the hybrid social spider using the dragon fly algorithm to determine the optimal solution.This optimal solution acts as a key for an advanced encryption standard to encrypt and decrypt the data.A central benefit of determining the optimal value in this way is that the intruder cannot determine this value.The attacker also cannot work out which specific part of the fingerprint and iris feature values are acted upon as a key for the AES technique.Finally,the encrypted data can be saved in the cloud using a cloud simulator.Experimental analysis was performed on five fingerprint and iris images for a man-in-the-middle attack.The simulation outcome validated that the presented HMO-ISOA model achieved better results compared with other existing methods.
文摘With the availability of low-cost radio frequency identification (RFID) tags,security becomes an increasing concern. However,such tags do not permit complex cryptographic functions due to their computational,communications,and storage limitations. In this paper,we investigate the security issues and requirements of RFID systems,and propose ultra-light weight and light weight protocols for low-cost RFID tags.The proposed protocols has been applied to a supply chain management system.
基金supported by National Natural Science Foundation of China under Grant No. 61100205Foundation of China Information Technology Security Evaluation Center under Grant No. CNITSEC-KY-0910-019/5
文摘In order to solve the various privacy and security problems in RFID system, a new low-cost RFID mutual authentication protocol based on ID updating mechanics is proposed. In the proposed scheme, the backend server keeps both the current ID and potential next ID for each tag, thus to solve the possible problem of de-synchronization attack in the most ID updating-based schemes. In the security analysis section, comparing several protocols in property required and attacker resistances, the comparison results show that the proposed protocol provides strong authentication and strong integrity of the transmissions and can withstand most the possible attacks that break the security of the previous schemes. In the performance evaluation section, the analysis results also indicate that, in terms of computational cost and storage requirement, the proposed scheme is safer, more efficient, more suitable for low-cost tag and more feasible in practice.
基金supported in part by the European Commission Marie Curie IRSES project "AdvIOT"the National Natural Science Foundation of China (NSFC) under grant No.61372103
文摘In network-connected UAV(NCUAV) communication systems, user authentication is replaced by platform identity authentication and integrity check because many NC-UAVs are operated without human intervention. Direct anonymous attestation(DAA) is an attractive cryptographic scheme that provides an elegant balance between platform authentication and anonymity. However, because of the low-level computing capability and limited transmission bandwidth in UAV, the existing DAA schemes are not suitable for NC-UAV communication systems. In this paper, we propose an enhanced DAA scheme with mutual authentication(MA-DAA scheme), which meets the security requirements of NC-UAV communication systems. The proposed MA-DAA scheme, which is based on asymmetric pairings, bundles the identities of trusted platform module(TPM) and Host to solve the malicious module changing attacks. Credential randomization, batch proof and verification, and mutual authentication are realized in the MA-DAA scheme. The computational workload in TPM and Host is reduced in order to meet the low computation and resource requirements in TPM and Host.The entire scheme and protocols are presented,and the security and efficiency of the proposed MA-DAA scheme are proved and analyzed.Our experiment results also confirm the high efficiency of the proposed scheme.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
基金Project (No. 60372076) supported by the National Natural ScienceFoundation of China
文摘In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.
基金partially supported by the MOST under Grant No.105-2221-E-327-036
文摘As the technology of mobile devices spreads fast,the price of mobile devices is getting cheaper.Most of the people have mobile devices,and these devices have the technology of near field communication(NFC).With the long time development and research,the mobile devices use NFC technology on the payment and authentication applications,and replace the smartcard,the access control card,and the credit card by using the card emulation mode.It helps the development of NFC applications.In recent years,more and more users begin using NFC technology on mobile payment and authentication.Many researches have proposed the related NFC authentication protocols,but their schemes are still lack of some security properties and functions,which are necessary for NFC authentication protocols.In this paper,we propose a secure and efficient NFC authentication scheme between two NFC devices by the help of the authentication server that provides mutual authentication.
文摘In the literature, several dynamic ID-based remote user mutual authentication schemes are implemented using password, smartcard and Elliptic Curve Cryptography(ECC), however, none of them provides resilience against different attacks. Therefore, there is a great need to design an efficient scheme for practical applications. In this paper, we proposed such a scheme in order to provide desired security attributes and computation efficiencies. Compared with other existing techniques, our scheme is more efficient and secured. In addition, our scheme is provably secure in the random oracle model under the hardness assumption of computational Diffie-Hellman problem.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61572086,61402058)Major Project of Education Department in Sichuan(Grant No.18ZA0109)+5 种基金Planning project of Sichuan Network Culture Research Center(Grant No.WLWH18-22)Key Research and Development Project of Sichuan Province(No.20ZDYF2324,No.2019ZYD027,No.2018TJPT0012)Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)Application Foundation Project of Sichuan Province(No.2017JY0168)Science and Technology Support Project of Sichuan Province(No.2018GZ0204,No.2016FZ0112).
文摘Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we propose a novel quantum secure direct communication protocol based on signal photons and Bell states.Before the execution of the proposed protocol,two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret,respectively.Then the message sender,Alice,encodes each secret message bit into two single photons(|01>or|10>)or a Bell state(1|φ^(+)>=1/√2(|0>|-|1>1>)),and composes an ordered secret message sequence.To insure the security of communication,Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB.By the secret identity IDA and IDB,both sides of the communication can check eavesdropping and identify each other.The proposed protocol not only completes secure direct communication,but also realizes the mutual authentication.The security analysis of the proposed protocol is presented in the paper.The analysis results show that this protocol is secure against some common attacks,and no secret message leaks even if the messages are broken.Compared with the two-way QSDC protocols,the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack.Furthermore,our proposed protocol can be realized without quantum memory.
基金supported by the National Natural Science Foundation of China(Grant No.61872138).
文摘Please WBANs are a sensor network for detection and collection of sensitive data to the human body,which is lightweight and mobile.WBANs transmit sensitive and significant messages through the public channel,which makes it easy for an attacker to eavesdrop and modify the messages,thus posing a severe threat to the security of the messages.Therefore,it is essential to put in place authentication and key agreement between different communication nodes in WBANs.In this paper,a lightweight and secure authenticated key agreement protocol in wireless body area networks is designed.It is capable to reduce the cost of sensor node computation while ensuring security.Besides,an informal security analysis is conducted to discuss the security of the protocol against well-known attacks.Finally,the energy consumption of the protocol is evaluated,and the results show that the sensor nodes only need low storage cost,computational cost and communication cost.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the National Natural Science Foundation of China (No.60903181)Nanjing University of Posts and Telecommunications Funds (No.NY208072)
文摘Most of the Radio Frequency IDentification (RFID) authentication protocols, proposed to preserve security and privacy, are analysed to show that they can not provide security against some passive or active attacks. In this paper, the security of two matrix-based protocols, proposed by Karthikeyan and Nesterenko (KN protocol) and Ramachandra et al. (RRS protocol) that conform to Electronic Product Code Class-1 Generation-2 (EPC Class-1 Gen-2) standard, are investigated. Using the linear relationship of multiplication of matrix and vector, we point out that both protocols can not provide scalability, and they are vulnerable to passive impersonation attack. In addition, both protocols are totally insecure if the adversary can compromise one tag to extract the secrets. A modified lightweight matrix-based authentication protocol is presented, which can resist mainly common attacks on an RFID authentication system including eavesdropping, relay attack, desynchronization attack, impersonation attack and tag tracking attack. The new protocol also has the desirable scalability property and can keep secure under compromising attack.
文摘In cloud computing environments, user authentication is an important security mechanism because it provides the fundamentals of authentication, authorization, and accounting (AAA). In 2009, Wang et al. proposed an identity-based (ID-based) authentication scheme to deal with the user login problem for cloud computing. However, Wang et aL's scheme is insecure against message alteration and impersonation attacks. Besides, their scheme has large computation costs for cloud users. Therefore, we propose a novel ID-based user authentication scheme to solve the above mentioned problems. The proposed scheme provides anonymity and security for the user who accesses different cloud servers. Compared with the related schemes, the proposed scheme has less computation cost so it is very efficient for cloud computing in practice.
基金the Deanship of Graduate Studies at Jouf University for funding and supporting this research through the initiative of DGS,Graduate Students Research Support(GSR)at Jouf University,Saudi Arabia.
文摘Wireless medical sensor networks(WMSNs)play a significant role in increasing the availability of remote healthcare systems.The vital and physiological data of the patient can be collected using the WMSN via sensor nodes that are placed on his/her body and then transmitted remotely to a healthcare professional for proper diagnosis.The protection of the patient’s privacy and their data from unauthorized access is a major concern in such systems.Therefore,an authentication scheme with a high level of security is one of the most effective mechanisms by which to address these security concerns.Many authentication schemes for remote patient monitoring have been proposed recently.However,the majority of these schemes are extremely vulnerable to attacks and are unsuitable for practical use.This paper proposes a secure three-factor authentication scheme for a patient-monitoring healthcare system that operates remotely using a WMSN.The proposed authentication scheme is formally verified using the Burrows,Abadi and Needham’s(BAN)logic model and an automatic cryptographic protocol verifier(ProVerif)tool.We show that our authentication scheme can prevent relevant types of security breaches in a practical context according to the discussed possible attack scenarios.Comparisons of the security and performance are carried out with recently proposed authentication schemes.The results of the analysis show that the proposed authentication scheme is secure and practical for use,with reasonable storage space,computation,and communication efficiency.
基金This work was supported in part by Beijing Municipal Natural Science Foundation(19L2020)Foundation of Science and Technology on Information Assurance Laboratory(614211204031117)Industrial Internet Innovation and Development Project(Typical Application and Promotion Project of the Security Technology for the Electronics Industry)of the Ministry of Industry and Information Technology of China in 2018,Foundation of Shanxi Key Laboratory of Network and System Security(NSSOF1900105).
文摘With the rising popularity of the Internet and the development of big data technology,an increasing number of organizations are opting to cooperate across domains to maximize their benefits.Most organizations use public key infrastructure to ensure security in accessing their data and applications.However,with the continuous development of identity-based encryption(IBE)technology,small-and medium-sized enterprises are increasingly using IBE to deploy internal authentication systems.To solve the problems that arise when crossing heterogeneous authentication domains and to guarantee the security of the certification process,we propose using blockchain technology to establish a reliable cross-domain authentication scheme.Using the distributed and tamper-resistant characteristics of the blockchain,we design a cross-domain authentication model based on blockchain to guarantee the security of the heterogeneous authentication process and present a cross-domain authentication protocol based on blockchain.This model does not change the internal trust structure of each authentication domain and is highly scalable.Furthermore,on the premise of ensuring security,the process of verifying the signature of the root certificate in the traditional cross-domain authentication protocol is improved to verify the hash value of the root certificate,thereby improving the authentication efficiency.The developed prototype exhibits generality and simplicity compared to previous methods.
基金supported in part by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2022C03174)the National Natural Science Foundation of China (No. 92067103)+4 种基金the Key Research and Development Program of Shaanxi (No.2021ZDLGY06- 02)the Natural Science Foundation of Shaanxi Province (No.2019ZDLGY12-02)the Shaanxi Innovation Team Project (No.2018TD007)the Xi’an Science and technology Innovation Plan (No.201809168CX9JC10)National 111 Program of China B16037
文摘Cloud computing provides powerful processing capabilities for large-scale intelligent Internet of things(IoT)terminals.However,the massive realtime data processing requirements challenge the existing cloud computing model.The edge server is closer to the data source.The end-edge-cloud collaboration offloads the cloud computing tasks to the edge environment,which solves the shortcomings of the cloud in resource storage,computing performance,and energy consumption.IoT terminals and sensors have caused security and privacy challenges due to resource constraints and exponential growth.As the key technology of IoT,Radio-Frequency Identification(RFID)authentication protocol tremendously strengthens privacy protection and improves IoT security.However,it inevitably increases system overhead while improving security,which is a major blow to low-cost RFID tags.The existing RFID authentication protocols are difficult to balance overhead and security.This paper designs an ultra-lightweight encryption function and proposes an RFID authentication scheme based on this function for the end-edge-cloud collaborative environment.The BAN logic proof and protocol verification tools AVISPA formally verify the protocol’s security.We use VIVADO to implement the encryption function and tag’s overhead on the FPGA platform.Performance evaluation indicates that the proposed protocol balances low computing costs and high-security requirements.
基金This work was supported by Taif University(in Taif,Saudi Arabia)through the Researchers Supporting Project Number(TURSP-2020/150).
文摘Many patients have begun to use mobile applications to handle different health needs because they can better access high-speed Internet and smartphones.These devices and mobile applications are now increasingly used and integrated through the medical Internet of Things(mIoT).mIoT is an important part of the digital transformation of healthcare,because it can introduce new business models and allow efficiency improvements,cost control and improve patient experience.In the mIoT system,when migrating from traditional medical services to electronic medical services,patient protection and privacy are the priorities of each stakeholder.Therefore,it is recommended to use different user authentication and authorization methods to improve security and privacy.In this paper,our prosed model involves a shared identity verification process with different situations in the e-health system.We aim to reduce the strict and formal specification of the joint key authentication model.We use the AVISPA tool to verify through the wellknown HLPSL specification language to develop user authentication and smart card use cases in a user-friendly environment.Our model has economic and strategic advantages for healthcare organizations and healthcare workers.The medical staff can increase their knowledge and ability to analyze medical data more easily.Our model can continuously track health indicators to automatically manage treatments and monitor health data in real time.Further,it can help customers prevent chronic diseases with the enhanced cognitive functions support.The necessity for efficient identity verification in e-health care is even more crucial for cognitive mitigation because we increasingly rely on mIoT systems.
基金This material is based upon work funded by the National Science Foundation EPSCoR Cooperative Agreement OIA-1757207。
文摘Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.
文摘The healthcare internet of things(IoT)system has dramatically reshaped this important industry sector.This system employs the latest technology of IoT and wireless medical sensor networks to support the reliable connection of patients and healthcare providers.The goal is the remote monitoring of a patient’s physiological data by physicians.Moreover,this system can reduce the number and expenses of healthcare centers,make up for the shortage of healthcare centers in remote areas,enable consultation with expert physicians around the world,and increase the health awareness of communities.The major challenges that affect the rapid deployment and widespread acceptance of such a system are the weaknesses in the authentication process,which should maintain the privacy of patients,and the integrity of remote medical instructions.Current research results indicate the need of a flexible authentication scheme.This study proposes a scheme with enhanced security for healthcare IoT systems,called an end-to-end authentication scheme for healthcare IoT systems,that is,an E2EA.The proposed scheme supports security services such as a strong and flexible authentication process,simultaneous anonymity of the patient and physician,and perfect forward secrecy services.A security analysis based on formal and informal methods demonstrates that the proposed scheme can resist numerous security-related attacks.A comparison with related authentication schemes shows that the proposed scheme is efficient in terms of communication,computation,and storage,and therefore cannot only offer attractive security services but can reasonably be applied to healthcare IoT systems.