期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on simulation of gun muzzle flow field empowered by artificial intelligence
1
作者 Mengdi Zhou Linfang Qian +3 位作者 Congyong Cao Guangsong Chen Jin Kong Ming-hao Tong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期196-208,共13页
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie... Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions. 展开更多
关键词 muzzle flow field Artificial intelligence Deep learning Data-physical fusion driven Shock wave
下载PDF
Influence of Different Velocities on Muzzle Flow Field 被引量:1
2
作者 LI Zijie WANG Hao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期88-97,共10页
A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FV... A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FVM)and the realizable k?ε turbulence model,we adopted the holistic movement of a partitioned mesh processing method coupled with the intermediate ballistic model and the six degree?of?freedom model(6?DOF). We compared the flow field characteristics at the velocity of 1 730.4,978.3,and 323.4 m/s. The results indicate that the pressure of the hypersonic initial flow field is much higher than that of the subsonic and supersonic initial flow fields. In the case of the subsonic(323.4 m/s)flow field,the tiny disturbance spreads throughout the whole domain. But in the cases of the supersonic(978.3 m/s) and the hypersonic(1 730.4 m/s) flow fields,it cannot spread to the upstream disturbance source,and the disturbance domain of the supersonic flow field is wider than that of the hypersonic. It is noted that the subsonic flow field has a rounded shock wave before the projectile. However,in the supersonic and hypersonic flow fields,a shear layer is formed which begins from the head of the projectile and extends outward from the side of the projectile. Then a multi?layer shock wave is formed composed of coronal shock waves,bottom shock waves,reflected shock waves,and Mach disk. 展开更多
关键词 muzzle flow field different velocities dynamic mesh two-dimensional axisymmetric
下载PDF
Numerical Simulation of Muzzle Flow Field Based on Calculation of Combustion Productions in Bore
3
作者 Liang Wang Houqian Xu +1 位作者 Wei Wu Rui Xue 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期72-78,共7页
To improve the accuracy of numerical simulation of muzzle chemical flow field,and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions i... To improve the accuracy of numerical simulation of muzzle chemical flow field,and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions in bore. The calculation in bore uses the gibbs free-energy minimization method and the classical interior ballistics model. The simulation of the muzzle flow field employs the multi-component ALE( Arbitrary Lagrange-Euler) equations. Computations are performed for a 12. 7 mm gun. From 2. 48 ms to3. 14 ms,the projectile moves in the gun barrel. CO and H2 O masses decrease by 3. 37% and 6. 51%,and H2 and CO2masses increase by 11. 11% and 10. 58%. The changes conform to the fact that the water-gas equilibrium reaction of all reactions plays a dominant role in this phase. After the projectile leaves the barrel,the masses of H2 and CO decrease,and the masses of H2 O and CO2 increase. When it moves to 80 d away from the muzzle,the decreases are 12. 75% and 8. 05%,and the increases are 12. 76% and 36. 26%,which tallies with the existence of muzzle flame. Further,CO and H2 burn more and more fiercely with the muzzle pressure pg increasing,and burn more and more weakly with the altitude rising. When two projectiles launch in series,the combustion of the second projectile muzzle flow field is fiercer than the first projectile. Analysis results have shown that the proposed method is effective for simulating the muzzle flow filed. 展开更多
关键词 COMBUSTION gibbs free-energy muzzle flow field
下载PDF
Numerical Investigation of the Multiphase Flow Originating from the Muzzle of Submerged Parallel Guns
4
作者 Dongxiao Zhang Lin Lu +3 位作者 Xiaobin Qi Xuepu Yan Cisong Gao Yanxiao Hu 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2707-2728,共22页
A two-dimensional model,employing a dynamic mesh technology,is used to simulate numerically the transient multiphaseflowfield produced by two submerged parallel guns.After a grid refinement study ensuring grid inde-pende... A two-dimensional model,employing a dynamic mesh technology,is used to simulate numerically the transient multiphaseflowfield produced by two submerged parallel guns.After a grid refinement study ensuring grid inde-pendence,five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle.The simulation results show thatflow interference is enabled when the distance between the par-allel barrels is relatively small;accordingly,the generation and evolution of the vapor cavity becomes more com-plex.By means of the Q criterion for vorticity detection,it is shown that cavitation causes the generation of vorticity and the evolution of the vapor cavity can result in an asymmetric distribution of vorticity for a certain distance of the barrels.In particular,the evolution of the vapor cavity can hinder the expansion of the gas and force it toflow outward,while an asymmetric distribution of vorticity can lead to a gas jetflowing outward and rotating simultaneously. 展开更多
关键词 Submerged parallel launch cavity evolution numerical simulation muzzle flow fields
下载PDF
Numerical investigation of a muzzle multiphase flow field using two underwater launch methods
5
作者 Jing-hui Zhang Yong-gang Yu Xin-wei Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1454-1469,共16页
A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized s... A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized shooting experiment platform with a high-speed camera is built to observe the evolution process of such a multiphase flow field. The simulated phase distribution diagram is agreed well with the shadow photo of the experiment, indicating that the numerical model is reasonable. Further examinations of the multiphase flow fields by using the submerged and sealed launch methods show that use of the sealed launch can significantly improve the interior ballistic performance of an underwater gun. In the cases by using these two types of underwater launch methods, the displacement of the projectile within the range of the muzzle flow field meets the exponential law over time. Moreover, a not fully developed bottle-shaped shock wave is formed when t = 0.4 ms, but this bottle-shaped shock wave expands more rapidly for the sealed launch. In addition, the amplitude of pressure oscillation for the sealed launch is larger than that of the submerged launch, but the pressure oscillation of the sealed launch lasts shorter. 展开更多
关键词 Underwater launch Multiphase flow muzzle flow field Numerical simulation Mach disk
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部