Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv...Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.展开更多
The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the format...The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries.展开更多
Intercalation of lithium ions into the electrodes of lithium ion batteries is affected by the stress of active materials, leading to energy dissipation and stress dependent voltage hysteresis. A reaction-diffusion-str...Intercalation of lithium ions into the electrodes of lithium ion batteries is affected by the stress of active materials, leading to energy dissipation and stress dependent voltage hysteresis. A reaction-diffusion-stress coupling model is established to investigate the stress effects under galvanostatic and potentiostatic operations. It is found from simulations that the stress hysteresis contributes to the voltage hysteresis and leads to the energy dissipation. In addition, the stress induced voltage hysteresis is small in low rate galvanostatic operations but extraordinarily significant in high rate cases. In potentiostatic operations, the stresses and stress induced overpotentials increase to a peak value very soon after the operation commences and decays all the left time. Therefore,a combined charge-discharge operation is suggested, i.e., first the galvanostatic one and then the potentiostatic one. This combined operation can not only avoid the extreme stress during operations so as to prevent electrodes from failure but also reduce the voltage hysteresis and energy dissipation due to stress effects.展开更多
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch...Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.展开更多
Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction result...Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.展开更多
Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage application...Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications.展开更多
The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic react...The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic reactions that occurred between the liquid electrolyte and Li-metal anode could be largely inhibited by regulating the Li+-solvation structure.The saturated Li+-solvation species exist in commonly used LiPF 6 liquid electrolyte that needs extra energy to desolvation during Li-electrodeposition.Partial solvation induced high-energy state Li-ions would be more energy favorable during the electron-reduction process,dominating the competition with solvent reduction reactions.The Li-symmetric cells that are cycling at higher temperatures show better performance;the cycled lithium metal anode with metallic lustre and the dendrite-free surface is observed.Theoretical calculation and experimental measurements reveal the existence of high-energy state Li+-solvates species,and their concentration increases with temperature.This study provides insight into the Li+-solvation structure and its electrodeposition characteristics.展开更多
The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both...The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both cycle life and energy density.To realize an ideal solid-phase conversion of sulfur,a deep understanding of the regulation path of reaction mechanism and a corresponding intentional material and/or cathode design are highly essential.Herein,via covalently fixing of sulfur onto the triallyl isocyanurate,a series of S-triallyl isocyanurate organosulfur polymer composites(STIs) are developed.Relationship between the structure and the electrochemical conversion behavior of STIs is systematically investigated.It is found that the structure of STIs varies with the synthetic temperature,and correspondingly the electrochemical redox of sulfur can be controlled from conventional "solid-liquid-solid" conversion to the "solid-solid" one.Among the STI series,the STI-5 composite realizes an ideal solid-phase conversion and demonstrates great potential for building a Li-S battery with high-energy density and long-cyclelife:it realizes stable cycling over 1000 cycles in carbonate electrolyte,with a degradation rate of0.053% per cycle;the corresponding pouch cell shows almost no capacity decay for 125 cycles under the conditions of high sulfur loading(4.5 mg cm^(-2)) and lean electrolyte(8 μL mg_s^(-1)).In addition,the tailoring strategy of STI can also apply to other precursors with allyl functional groups to develop new organosulfur polymers for "solid-solid" sulfur cathodes.The vulcanized triallyl phosphate(STP) and triallylamine(STA) both show great lithium storage potential.This strategy successfully develops a new family of organosulfur polymers as cathodes for Li-S batteries via solid-phase conversion of sulfur,and brings insights to the mechanism study in Li-S batteries.展开更多
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo...The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.展开更多
All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitab...All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitable owing to their high ionic conductivity and facile processability.However,their performance is extensively lower compared with those of conventional liquid electrolyte-based batteries mainly because of interfacial reactions between the solid electrolytes and high capacity cathodes.Moreover,the kinetic evolution reaction in the composite cathode of all-solid-state lithium batteries has not been actively discussed.Here,electrochemical analyses were performed to investigate the differences between the organic liquid electrolyte-based battery and all-solid-state battery systems.Combined with electrochemical analyses and synchrotron-based in situ and ex situ X-ray analyses,it was confirmed that inhomogeneous reactions were due to physical contact.Loosely contacted and/or isolated active material particles account for the inhomogeneously charged regions,which further intensify the inhomogeneous reactions during extended cycles,thereby increasing the polarization of the system.This study highlighted the benefits of electrochemo-mechanical integrity for securing a smooth conduction pathway and the development of a reliable homogeneous reaction system for the success of solid-state batteries.展开更多
To obtain high-performance lithium-sulfur(Li-S)batteries,it is necessary to rationally design electrocatalytic materials that can promote efficient sulfur electrochemical reactions.Herein,the robust heterostructured m...To obtain high-performance lithium-sulfur(Li-S)batteries,it is necessary to rationally design electrocatalytic materials that can promote efficient sulfur electrochemical reactions.Herein,the robust heterostructured material of nanoscale transition metal anchored on perovskite oxide was designed for efficient catalytic kinetics of the oxidation and reduction reactions of lithium polysulphide(Li PSs),and verified by density functional theory(DFT)calculations and experimental characterizations.Due to the strong interaction of nanoscale transition metals with Li PSs through chemical coupling,heterostructured materials(STO@M)(M=Fe,Ni,Cu)exhibit excellent catalytic activity for redox reactions of Li PSs.The bifunctional heterostructure material STO@Fe exhibits good rate performance and cycling stability as the cathode host,realizing a high-performance Li-S battery that can maintain stable cycling under rapid charge-discharge cycling.This study presents a novel approach to designing electrocatalytic materials for redox reactions of Li PSs,which promotes the development of fast charge-discharge Li-S batteries.展开更多
Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic am...Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances.展开更多
基金supported by the National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22379013 and 22209010)the Beijing Institute of Technology“Xiaomi Young Scholars”program。
文摘Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.
基金supported by the National Nature Science Foundation of China [52172247, 21875237]the National Key R&D Program of China [2018YFB0905400]。
文摘The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries.
基金supported by the National Natural Science Foundation of China(Nos.11672170,11332005,and 11702166)the Natural Science Foundation of Shanghai(No.16ZR1412200)
文摘Intercalation of lithium ions into the electrodes of lithium ion batteries is affected by the stress of active materials, leading to energy dissipation and stress dependent voltage hysteresis. A reaction-diffusion-stress coupling model is established to investigate the stress effects under galvanostatic and potentiostatic operations. It is found from simulations that the stress hysteresis contributes to the voltage hysteresis and leads to the energy dissipation. In addition, the stress induced voltage hysteresis is small in low rate galvanostatic operations but extraordinarily significant in high rate cases. In potentiostatic operations, the stresses and stress induced overpotentials increase to a peak value very soon after the operation commences and decays all the left time. Therefore,a combined charge-discharge operation is suggested, i.e., first the galvanostatic one and then the potentiostatic one. This combined operation can not only avoid the extreme stress during operations so as to prevent electrodes from failure but also reduce the voltage hysteresis and energy dissipation due to stress effects.
基金financially supported by NSFC (Grant Nos.21621091,21373008)the National Key Research and Development Program of China (2016YFB0100202)
文摘Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFB0104302)the National Natural Science Foundation of China(Grant No.51872026)。
文摘Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.
基金financially supported by the National Natural Science Foundation of China(nos.51702225,21671059,51702218)Jiangsu Youth Science Foundation(no.BK20170336)Program for Changjiang Scholars and Innovative Research Team in University(IRT-17R36).
文摘Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications.
基金This work was funded by the National Natural Science Foundation of China (52073161 and U1564205)the Ministry of Science and Technology of China (No.2019YFE0100200 and 2019YFA0705703)+1 种基金The authors also thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center (CERC-CVC2.0,2016-2020)thank Tsinghua University-Zhangjiagang Joint Institute for Hydrogen Energy and Lithium Ion Battery Technology.
文摘The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic reactions that occurred between the liquid electrolyte and Li-metal anode could be largely inhibited by regulating the Li+-solvation structure.The saturated Li+-solvation species exist in commonly used LiPF 6 liquid electrolyte that needs extra energy to desolvation during Li-electrodeposition.Partial solvation induced high-energy state Li-ions would be more energy favorable during the electron-reduction process,dominating the competition with solvent reduction reactions.The Li-symmetric cells that are cycling at higher temperatures show better performance;the cycled lithium metal anode with metallic lustre and the dendrite-free surface is observed.Theoretical calculation and experimental measurements reveal the existence of high-energy state Li+-solvates species,and their concentration increases with temperature.This study provides insight into the Li+-solvation structure and its electrodeposition characteristics.
基金supported by the National Science Foundation of China (22075091)the National Science Foundation of Hubei Province (2021CFA066)。
文摘The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both cycle life and energy density.To realize an ideal solid-phase conversion of sulfur,a deep understanding of the regulation path of reaction mechanism and a corresponding intentional material and/or cathode design are highly essential.Herein,via covalently fixing of sulfur onto the triallyl isocyanurate,a series of S-triallyl isocyanurate organosulfur polymer composites(STIs) are developed.Relationship between the structure and the electrochemical conversion behavior of STIs is systematically investigated.It is found that the structure of STIs varies with the synthetic temperature,and correspondingly the electrochemical redox of sulfur can be controlled from conventional "solid-liquid-solid" conversion to the "solid-solid" one.Among the STI series,the STI-5 composite realizes an ideal solid-phase conversion and demonstrates great potential for building a Li-S battery with high-energy density and long-cyclelife:it realizes stable cycling over 1000 cycles in carbonate electrolyte,with a degradation rate of0.053% per cycle;the corresponding pouch cell shows almost no capacity decay for 125 cycles under the conditions of high sulfur loading(4.5 mg cm^(-2)) and lean electrolyte(8 μL mg_s^(-1)).In addition,the tailoring strategy of STI can also apply to other precursors with allyl functional groups to develop new organosulfur polymers for "solid-solid" sulfur cathodes.The vulcanized triallyl phosphate(STP) and triallylamine(STA) both show great lithium storage potential.This strategy successfully develops a new family of organosulfur polymers as cathodes for Li-S batteries via solid-phase conversion of sulfur,and brings insights to the mechanism study in Li-S batteries.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China(21776019)
文摘The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021M3H4A1A02045953 and No.NRF-2021R1C1C2007797)。
文摘All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitable owing to their high ionic conductivity and facile processability.However,their performance is extensively lower compared with those of conventional liquid electrolyte-based batteries mainly because of interfacial reactions between the solid electrolytes and high capacity cathodes.Moreover,the kinetic evolution reaction in the composite cathode of all-solid-state lithium batteries has not been actively discussed.Here,electrochemical analyses were performed to investigate the differences between the organic liquid electrolyte-based battery and all-solid-state battery systems.Combined with electrochemical analyses and synchrotron-based in situ and ex situ X-ray analyses,it was confirmed that inhomogeneous reactions were due to physical contact.Loosely contacted and/or isolated active material particles account for the inhomogeneously charged regions,which further intensify the inhomogeneous reactions during extended cycles,thereby increasing the polarization of the system.This study highlighted the benefits of electrochemo-mechanical integrity for securing a smooth conduction pathway and the development of a reliable homogeneous reaction system for the success of solid-state batteries.
基金supported by the National Natural Science Foundation of China (22179007)。
文摘To obtain high-performance lithium-sulfur(Li-S)batteries,it is necessary to rationally design electrocatalytic materials that can promote efficient sulfur electrochemical reactions.Herein,the robust heterostructured material of nanoscale transition metal anchored on perovskite oxide was designed for efficient catalytic kinetics of the oxidation and reduction reactions of lithium polysulphide(Li PSs),and verified by density functional theory(DFT)calculations and experimental characterizations.Due to the strong interaction of nanoscale transition metals with Li PSs through chemical coupling,heterostructured materials(STO@M)(M=Fe,Ni,Cu)exhibit excellent catalytic activity for redox reactions of Li PSs.The bifunctional heterostructure material STO@Fe exhibits good rate performance and cycling stability as the cathode host,realizing a high-performance Li-S battery that can maintain stable cycling under rapid charge-discharge cycling.This study presents a novel approach to designing electrocatalytic materials for redox reactions of Li PSs,which promotes the development of fast charge-discharge Li-S batteries.
基金the National Natural Science Foundation of China(Grant no.51973073)the Fel owship of China Postdoctoral Science Foundation(2021M701303)the analytical and testing assistance from the Analysis and Testing Center of HUST for support of this work
文摘Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances.