Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak sig...Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak signal is difficult even with state-of-the-art multi-domain and multidimensional prestack denoising techniques.This paper presents a time–space dip analysis of offset vector tile(OVT)domain data based on theτ-p transform.The proposed N-th root slant stack method enhances the signal in a three-dimensionalτ-p domain by establishing a zero-offset time-dip seismic attribute trace and calculating the coherence values of a given data sub-volume(i.e.,inline,crossline,time),which are then used to recalculate the data.After sorting,the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack,which is used to enhance a weak signal.The proposed method was applied to denoising low signal-to-noise ratio(SNR)data from Western China.The optimal N value was determined for improving the SNR in deep strata,and the weak seismic signal was enhanced.The results showed that the proposed method effectively suppressed noise in low-SNR data.展开更多
Digital waveform data recorded by the vertical component short period stations at the American networks of SCSN, NCSN and PNSN and three components broadband stations at the Germany and Swiss networks and arrays of GR...Digital waveform data recorded by the vertical component short period stations at the American networks of SCSN, NCSN and PNSN and three components broadband stations at the Germany and Swiss networks and arrays of GRFN, GRSN and SDSNet for the events between 1981 and 2000 under Izu-Bonin are used as data sets. The N-th root slant stack method was used to pick up the SdP phase converted at the velocity interface beneath source and the regionalized difference of the 660 km discontinuity beneath Izu-Bonin is studied. It is found that while the dip angles of the subducting slab and the maximal depths of sources increase gradually from 35N to 26N, the 660 km discontinuity appears regionalized differences. The discontinuity exists at 660 km while there is no effect from subducting slab, but it is depressed to the depth of 720 km while there are obvious effects. The dispersion of converted points is still an unsolved problem which maybe result from the complex structure of the discontinuity, converted phases which were misjudged, or the assumption of one dimensional spherical earth model.展开更多
文摘Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak signal is difficult even with state-of-the-art multi-domain and multidimensional prestack denoising techniques.This paper presents a time–space dip analysis of offset vector tile(OVT)domain data based on theτ-p transform.The proposed N-th root slant stack method enhances the signal in a three-dimensionalτ-p domain by establishing a zero-offset time-dip seismic attribute trace and calculating the coherence values of a given data sub-volume(i.e.,inline,crossline,time),which are then used to recalculate the data.After sorting,the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack,which is used to enhance a weak signal.The proposed method was applied to denoising low signal-to-noise ratio(SNR)data from Western China.The optimal N value was determined for improving the SNR in deep strata,and the weak seismic signal was enhanced.The results showed that the proposed method effectively suppressed noise in low-SNR data.
基金State Natural Science Foundation of China (49874020) and the Special Funds for Major State Basic Research of China (95-13-04-06).
文摘Digital waveform data recorded by the vertical component short period stations at the American networks of SCSN, NCSN and PNSN and three components broadband stations at the Germany and Swiss networks and arrays of GRFN, GRSN and SDSNet for the events between 1981 and 2000 under Izu-Bonin are used as data sets. The N-th root slant stack method was used to pick up the SdP phase converted at the velocity interface beneath source and the regionalized difference of the 660 km discontinuity beneath Izu-Bonin is studied. It is found that while the dip angles of the subducting slab and the maximal depths of sources increase gradually from 35N to 26N, the 660 km discontinuity appears regionalized differences. The discontinuity exists at 660 km while there is no effect from subducting slab, but it is depressed to the depth of 720 km while there are obvious effects. The dispersion of converted points is still an unsolved problem which maybe result from the complex structure of the discontinuity, converted phases which were misjudged, or the assumption of one dimensional spherical earth model.