提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的...提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。展开更多
朴素贝叶斯分类器是一种简单高效的分类算法,但其属性独立性假设影响了分类效果。通过放松朴素贝叶斯假设可以增强朴素贝叶斯的分类效果,但是通常会导致计算代价大幅提高。针对以上问题,提出了一种基于粗糙集的特征加权朴素贝叶斯算法,...朴素贝叶斯分类器是一种简单高效的分类算法,但其属性独立性假设影响了分类效果。通过放松朴素贝叶斯假设可以增强朴素贝叶斯的分类效果,但是通常会导致计算代价大幅提高。针对以上问题,提出了一种基于粗糙集的特征加权朴素贝叶斯算法,加权参数直接从训练数据中学习得到,可以看作是计算某个后验概率时,某个特征对于该类别的影响程度。将该分类算法与朴素贝叶斯分类器(na ve bayesian classifier,NB)、贝叶斯网(bayes networks)和NBTree分类器进行实验比较。结果表明:在大多数数据集上,FWNB分类器在较小的计算代价下,具有较高的分类正确率。展开更多
文摘提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。
文摘朴素贝叶斯分类器是一种简单高效的分类算法,但其属性独立性假设影响了分类效果。通过放松朴素贝叶斯假设可以增强朴素贝叶斯的分类效果,但是通常会导致计算代价大幅提高。针对以上问题,提出了一种基于粗糙集的特征加权朴素贝叶斯算法,加权参数直接从训练数据中学习得到,可以看作是计算某个后验概率时,某个特征对于该类别的影响程度。将该分类算法与朴素贝叶斯分类器(na ve bayesian classifier,NB)、贝叶斯网(bayes networks)和NBTree分类器进行实验比较。结果表明:在大多数数据集上,FWNB分类器在较小的计算代价下,具有较高的分类正确率。